Article
Probabilistic interval predictor based on dissimilarity functions
Author/s | Carnerero Panduro, Alfonso Daniel
Rodríguez Ramírez, Daniel ![]() ![]() ![]() ![]() ![]() ![]() ![]() Alamo, Teodoro ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Department | Universidad de Sevilla. Departamento de Ingeniería de Sistemas y Automática |
Date | 2021-12 |
Published in |
|
Abstract | This work presents a new methodology to obtain probabilistic interval predictions of a dynamical system. The proposed strategy uses stored past system measurements to estimate the future evolution of the system. The method ... This work presents a new methodology to obtain probabilistic interval predictions of a dynamical system. The proposed strategy uses stored past system measurements to estimate the future evolution of the system. The method relies on the use of dissimilarity functions to estimate the conditional probability density function of the outputs. A family of empirical probability density functions, parameterized by means of two scalars, is introduced. It is shown that the proposed family encompasses the multivariable normal probability density function as a particular case. We show that the presented approach constitutes a generalization of classical estimation methods. A validation scheme is used to tune the two parameters on which the methodology relies. In order to prove the effectiveness of the presented methodology, some numerical examples and comparisons are provided. |
Citation | Carnerero Panduro, A.D., Rodríguez Ramírez, D. y Alamo, T. (2021). Probabilistic interval predictor based on dissimilarity functions. IEEE Transactions on Automatic Control, December |
Files | Size | Format | View | Description |
---|---|---|---|---|
IE3_alamo-cantarero_2021_Proba ... | 524.1Kb | ![]() | View/ | |