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Probabilistic interval predictor based on dissimilarity functions
A. D. Carnerero, D. R. Ramirez, and T. Alamo

Abstract— This work presents a new methodology to obtain
probabilistic interval predictions of a dynamical system. The pro-
posed strategy uses stored past system measurements to estimate
the future evolution of the system. The method relies on the use
of dissimilarity functions to estimate the conditional probability
density function of the outputs. A family of empirical probability
density functions, parameterized by means of two scalars, is in-
troduced. It is shown that the proposed family encompasses the
multivariable normal probability density function as a particular
case. We show that the presented approach constitutes a gener-
alization of classical estimation methods. A validation scheme is
used to tune the two parameters on which the methodology relies.
In order to prove the effectiveness of the presented methodology,
some numerical examples and comparisons are provided.

Index Terms— Prediction intervals, system identification,
nonlinear systems, uncertainty.

I. INTRODUCTION

Consider a discrete nonlinear system

yk = f0(xk, wk), (1)

where f0(·, ·) is not known, k is the discrete time instant, yk ∈
Y ⊆ IR is the output of the system, wk accounts for parametric
uncertainty, noise, disturbances, etc. Also, vector xk ∈ X ⊆ IRnx

represents the past inputs and outputs of the system, i.e., xk =
[yk−1, yk−2, ..., yk−ny , uk, uk−1, ..., uk−nu ] and nx = ny +nu+
1. Note that nonlinear terms of past system inputs-outputs could be
incorporated into vector xk.

In this paper we focus on interval predictions. That is, given
the regressor xk, the objective is to compute an interval I(xk) =
[y−k , y+k ] such that we maximize the probability that yk belongs to
I(xk) while minimizing the interval width (y+k − y−k ). These two
conflicting objectives can be reconciled if one minimizes the interval
width with the constraint that I(xk) contains yk with a pre-specified
probability.

Interval predictions play a relevant role in the control of uncertain
systems. Zonotopes and DC Programming are used to obtain interval
state estimators in [1] and [2] respectively. Interval observers for
linear time-varying systems have been proposed in [3] and [4]. Fault
detection methods based on zonotopic bounds can be found in [5].
In [6], set theoretic approaches are also used in the context of fault
detection. Set membership methods [7], [8] can also be used to obtain
interval predictions. A mixed Bayesian/set-membership approach is
proposed in [9].

There exists different methods in the literature that address the
problem of obtaining interval predictions for system (1). For example,
if the uncertain vector wk is bounded and f0(·, ·) satisfies some
Lipschitz assumptions, one can resort to bounded error methods
[10] that guarantee that yk is always contained in I(xk). See, for
example, [11] and [12]. Other bounded error strategies have been
proposed in [13], [14], [15]. The statistical characterization of noise
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and disturbances can be used to enhance the performance of interval
estimation methods. See [16], [17], [18] and references therein.
Also, probabilistic validation methods can be used to assess the
performance of the interval predictors [19], [20], [21], [22].

Denote F (ȳ|xk) the cumulative distribution function of the asso-
ciated output y conditioned to the regressor x = xk. That is,

F (ȳ|xk) = Prob{ y ≤ ȳ : x = xk }.

Related with this probability is the notion of quantile [23], [24]. Given
xk, we say that ȳτ is the conditioned τ -quantile if

F (ȳτ |xk) = Prob{ y ≤ ȳτ : x = xk } = τ.

The notion of quantile is closely related to the one of confidence
intervals. The estimation of the conditioned quantiles is relevant in
multiple applications (see [25] and [26]) and can be addressed using
different methodologies. The most classical approach relies on the
assumption that yk and xk are jointly normal. That is, the assumption
that the (joint) probability density function of the (random) variables
y and x is a multivariable normal probability density function. Under
this assumption, the conditioned p.d.f. is a monovariable normal
p.d.f. and the quantiles can be obtained in a simple and direct way
[27]. Unfortunately, the methods based on normal distributions are
very sensitive to the presence of outlier contamination. Moreover,
in many long-tailed situations, the normal assumption is not well
suited to characterize confidence intervals and one has to resort
to non-Gaussian distributions. In these cases, generalizations of the
Chebyshev inequality can be used to obtain probabilistic bounds [28],
[29].

The computation of the conditioned quantiles can be also addressed
by means of parametric regression techniques [24], [25]. If one
assumes that there exists θ for which yk ≈ θ⊤xk, then parameter
vector θ can be chosen as the one that minimizes a cost function of the
error θ⊤xk − yk. If one chooses a cost function that penalizes in an
asymmetric way positive and negative errors then a quantile regressor
is obtained. Given the training pairs (yj , xj), j = 1, . . . , N and
τ ∈ (0, 1), the quantile regressor is defined in terms of the following
optimization problem

min
θ

N∑
j=1

(1− τ)max{0, θ⊤xj − yj}+ τ max{0, yj − θ⊤xj}.

This linear optimization problem penalizes the (training) errors ej =

θ⊤xj − yj , j = 1, . . . , N in an asymmetric way. The positive errors
are weighted with coefficient (1−τ) and the negatives with coefficient
τ . If τ ∈ (0, 1) is close to zero, then the positive errors will be highly
penalized (in comparison with the negative ones). This means that
every optimal solution θτ to the linear optimization problem will tend
to make most of the errors negative. This implies that θ⊤τ xk could
be used as a probabilistic lower bound for yk. In a similar way, a
probabilistic upper bound could be obtained taking τ ∈ (0, 1) close to
1. Under rather mild assumptions, any minimizer θτ of the proposed
optimization problem can be used to obtain an estimation of the τ
quantile. That is, θ⊤τ xk serves as an estimation of the τ quantile
associated with yk. See [24], [30] and [25] for further details.

One of the main limitations of quantile regression is that a large
number of training samples N is required if one desires to obtain
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probabilistic guarantees of the method when τ is chosen close to the
extremes of the interval (0, 1). This is due to the fact that estimating
the probability of rare events requires a large number of samples. For
example, the number of independent identically distributed samples
required to obtain the 1 − ϵ quantile of a monovariable random
variable grows with 1

ϵ (see [31], [20] and [21]).
This paper presents a new methodology for the computation of

interval predictions of a dynamical system. Dissimilarity functions
are used to estimate the conditional probability density function of
the outputs. The estimated probability density function is used to
derive the interval prediction. It is shown that the standard linear
regression is a particular case of the proposed methodology. The
paper is organized as follows. In Section II a family of dissimilarity
functions is proposed. In Section III the role of dissimilarity functions
in linear regression is analyzed. The probabilistic interval predictors
are presented in Section IV. The methodology is applied to some
forecasting problems in Section V. The paper ends with a section of
conclusions.

II. DISSIMILARITY FUNCTIONS

Given a data set

D = { zi : i = 1, . . . , N } ⊂ IRn,

we are interested in determining if a given vector z can be considered
to be similar to the other vectors of the data set D. In a more precise
way, we are looking for a function

Jd(·, ·) : IRn ×D → [0,∞]

that measures the dissimilarity between a given point z and the
data set D. Large values of Jd(z,D) represent a high degree of
dissimilarity, while small values correspond to a high degree of
similarity (i.e., a small degree of dissimilarity). Clearly, from a
dissimilarity function Jd(x,D) one can obtain a similarity function
Js(x,D). For example, given σ > 0, Js(x,D) = e−σJd(z,D) is
small when z is not similar to the points in D and close to 1 when
z is very similar to the elements of D. Another possibility would be
Js(x,D) = (1 + σJd(z,D))−1, where σ > 0.

There exists a wide class of operators that can serve as dissimilarity
functions for the particular case in which D is a singleton (D =
{zD}). For singleton D, one popular choice is

Jd(z, zD) = ∥z − zD∥,

where ∥·∥ is a given norm. One could also use the minimum distance
to set D. That is,

Jd(z,D) = min
ẑ∈D

∥z − ẑ∥. (2)

Another possibility could be to consider as a dissimilarity function
the mean value of the distances of z to each member of set D. See
chapter 2 of [32] and chapter 2 of [33] for a review of similarity and
dissimilarity functions applied in the field of image registration and
in the context of cluster analysis, respectively.

Dissimilarity and similarity functions can be used in the context
of regression. Suppose that we have the pairs {xi, yi}, i = 1, . . . , N
and that we would like to estimate, given x, its corresponding
output y. Given the similarity function Js(·, ·), one possibility for
the estimation ŷ of y is

ŷ =

N∑
i=1

λiyi,

where the scalars λi are chosen in such a way that λi is small when
the similarity function Js(x, xi) is small. It is also reasonable to

normalize the sum of the scalars λi to the unity. That is,
N∑
i=1

λi = 1.

For example, one could choose

λi =
Js(x, xi)

N∑
j=1

Js(x, xj)

, i = 1, . . . , N.

Although this approach could be valid for some applications, more
sophisticated approaches are required in many situations, as it is just
a weighted average. We propose in this paper a convex optimization
problem to obtain a measure of dissimilarity between a point z and
a set D. This is formally stated in the following definition.

Definition 1: Given z ∈ IRn, a set of measurements D =
{z1, . . . , zN} ⊂ IRn and the scalar γ ≥ 0, the dissimilarity function
Jγ(z,D) is defined as

Jγ(z,D) = min
λ1,...,λN

N∑
i=1

λ2i + γ

N∑
i=1

|λi|

s.t. z =

N∑
i=1

λizi

1 =

N∑
i=1

λi. (3)

Remark 1: Note that non negative constant weights could be
included into the cost function. That is, one could consider the cost
function

N∑
i=1

wiλ
2
i + γ

N∑
i=1

|λi|,

where the scalars wi, i = 1, . . . , N are used to weight the different
elements in D. These weights could be computed using a distance
function between z and the singleton {zi} (for example, wi = ||z−
zi||) or any dissimilarity function.

This would be a way to incorporate local information into the
analysis. This strategy could be useful when the considered system
is non-linear. Although the results of the paper are stated for the
particular case in which wi = 1, i = 1, . . . , N , the generalization to
the general case is not difficult.

Remark 2: We notice that the optimization problem (3) could be
non-feasible. In order to rule out this possibility, we assume that the
vectors that compose set D span all the space.

Remark 3: Optimization problem (3) is similar to the one appear-
ing in the context of direct weight optimization and kriging, where
central predictions of a certain variable are obtained by means of the
solution of an optimization problem [16], [15], [34], [35], [36].

It is important to remark that the proposed dissimilarity measure
is invariant with respect to affine transformations. This is formally
stated in the following property.

Property 1: Consider zT,v and DT,v obtained from z and D
through the following affine transformation.

zT,v = Tz + v

DT,v = { Tz + v : z ∈ D },

where T is any non-singular matrix and v is any vector of adequate
dimensions. Then

Jγ(z,D) = Jγ(zT,v,DT,v).

Proof: We first show that any feasible solution λi, i = 1, . . . , N
to the problem of computing Jγ(z,D) is also a feasible solution for

the computation of Jγ(zT,v,DT,v). Suppose that z =
N∑
i=1

λizi and
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N∑
i=1

λi = 1. Then

zT,v = Tz + v

= T

(
N∑
i=1

λizi

)
+

(
N∑
i=1

λi

)
v

=

N∑
i=1

λi(Tzi + v).

We notice that Tzi + v, i = 1, . . . , N , are the elements of
DT,v . Therefore λi, i = 1, . . . , N , is also a feasible solution for
the problem that defines Jγ(zT,v,DT,v). From this we infer that
Jγ(zT,v,DT,v) ≤ Jγ(z,D). On the other hand, since T is non-
singular we can make a similar reasoning to show that any feasible
solution for Jγ(zT,v,DT,v) is a feasible solution for Jγ(z,D). In
this way we prove also that Jγ(z,D) ≤ Jγ(zT,v,DT,v). Both
inequalities prove the claimed equality.

This invariance property is very important because it guarantees
that the analysis based on the proposed dissimilarity function is not
affected by the choice of the coordinate system. We notice that many
of the dissimilarity functions that can be found in the literature are
not invariant. For example, any dissimilarity function based on the
distance of z to the elements of D, such as that of equation (2), will
be dependent on the particular choice of coordinate system.

The proposed optimization problem (3) is a strict convex opti-
mization problem subject to convex constraints. This means that it
has a unique solution [37]. From an optimization point of view, we
notice that the numerical resolution can be addressed using a dual
formulation. In the dual formulation for this particular optimization
problem, the number of dual decision variables is equal to the number
of equality constraints (n + 1) which is in many situations much
smaller than the number of primal variables (N ). On the other hand,
the gradient of the objective function in the dual formulation can
be obtained in a direct way because once the dual variables are
fixed, the optimal values for the primal variables are obtained solving
a separable optimization problem (which has an explicit solution).
The numerical examples of this paper have been obtained using an
accelerated gradient method in the dual variables. See [38], [39] and
[40]. The alternating direction method of multipliers can also be used
in this context [41].

As it is formally stated in the following property, the optimization
problem has an explicit solution for the particular case γ = 0 (see
Appendix A for proof).

Property 2: Suppose that D = {z1, z2, . . . , zN}, then J0(z,D)
has the following explicit expression

J0(z,D) = N−1 + (z − z̄)⊤(ZZ⊤ −Nz̄z̄⊤)−1(z − z̄),

where Z = [z1 z2 ... zN ], z̄ = N−1Zu and u ∈ IRN is a vector
with all its N components equal to 1.

The previous result shows that the dissimilarity function is a
quadratic function on the argument z for the particular case γ = 0.
For the more general case in which γ > 0 we can infer from the
Karush-Kuhn-Tucker optimality conditions [37] that the dissimilarity
function Jγ(z,D) is a piecewise convex quadratic function with
respect to z.

III. DISSIMILARITY FUNCTIONS AND REGRESSION

We show in this section how dissimilarity functions can be used
in the context of regression. Imagine that the data set

D = { zi =

[
yi
xi

]
: i = 1, . . . , N } ⊂ Y × X ,

is available. Given xk, and γ ≥ 0, one could obtain and estimation

ŷk for yk minimizing the dissimilarity function of vector
[

y
xk

]
with respect to the data set D. That is,

ŷk = arg min
y

Jγ(

[
y
xk

]
,D).

Therefore, given xk and γ ≥ 0, the estimation ŷk could be
obtained from the optimization problem

min
y,λ1,...,λN

N∑
i=1

λ2i + γ

N∑
i=1

|λi|

s.t.

[
y
xk

]
=

N∑
i=1

λi

[
yi
xi

]
(4)

1 =

N∑
i=1

λi.

Since the decision variable y appears only in the equality constraint
(4), one could solve the optimization problem ignoring the equality
constraint

y =

N∑
i=1

λiyi,

and making the optimal value of y equal to

ŷk = y∗ =

N∑
i=1

λ∗i yi, (5)

where λ∗i , i = 1, . . . , N are the optimal values of the optimization
problem

min
λ1,...,λN

N∑
i=1

λ2i + γ

N∑
i=1

|λi|

s.t. xk =

N∑
i=1

λixi

1 =

N∑
i=1

λi.

Therefore, the estimation provided by the method is a linear
combination of the outputs yi. This is consistent with different results
from the specialized literature in which it is shown that under certain
assumptions, the optimal solution to an estimation problem is given
by a linear combination of the observed outputs (see [16], and [42]).
The central estimation provided by equation (5) is similar to other
weighted methods like [15], [16] and [34].

As it is stated in the following property, the estimation obtained
for the particular case γ = 0 matches the one given by the linear
least squares method.

Property 3: Given a point xk, the estimation

ŷk = arg min
y

J0(

[
y
xk

]
,D),

matches the estimation obtained by linear least squares using D =

{ zi =

[
yi
xi

]
: i = 1, . . . , N } as data set. The proof is provided

in Appendix B.
Previous property shows that the estimation method proposed in

this paper encompasses the least squares method for the particular
case γ = 0. A family of optimal estimators is obtained if one
considers γ as a tuning parameter. In the following sections, we

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on February 07,2022 at 12:43:19 UTC from IEEE Xplore.  Restrictions apply. 



0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3136137, IEEE
Transactions on Automatic Control

4 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

show not only how to tune the value of γ, but also how to use this
methodology to obtain probabilistic interval estimations.

A. Empirical Probability Density Function

The dissimilarity of a given vector z ∈ Z ⊆ IRn with respect to
the elements of D can be used to define an empirical probability den-
sity function. The next definition introduces the notion of empirical
p.d.f.

Definition 2 (Empirical p.d.f.): Given a set of measurements D =
{z1, . . . , zN} ⊂ Z , γ ≥ 0 and c ≥ 0, the empirical probability
density function epγ,c(z,D) is defined for every z ∈ Z as

epγ,c(z,D) =
exp (−cJγ(z,D))∫

Z
exp (−cJγ(ẑ,D)) dẑ

. (6)

Note that expression (6) provides a family of probability density
functions that are parameterized by constants γ and c. We notice
that by construction, ∫

Z

epγ,c(ẑ,D)dẑ = 1.

We also notice that if Z is a compact set, the choice c = 0 provides
a uniform p.d.f. in Z .

Remark 4: Recall that from property 2 we have

J0(z,D) = N−1 + (z − z̄)⊤(ZZ⊤ −Nz̄z̄⊤)−1(z − z̄)

=
1

N
+

1

N
(z − z̄)⊤(

1

N
ZZ⊤ − z̄z̄⊤)−1(z − z̄),

where Z = [z1 z2 ... zN ], z̄ = N−1Zu and u is a vector with all
its components equal to 1. This means that if c = N

2 and γ = 0
then epγ,c(z,D) is a multivariable normal distribution with mean
z̄ and covariance matrix 1

N ZZ⊤ − z̄z̄⊤, which corresponds to the
empirical covariance matrix of the data set D.
As already commented, the proposed method provides a way to obtain
a family of empirical probability density functions that encompasses
the normal distributions and the uniform one. In order to obtain
the parameters c and γ for a given data set D generated by other
distributions, one could use the maximum likelihood methodology.
See, for example, [23]. We show in the following example how the
proposed methodology can be used to estimate the probability density
function that characterizes a given data set D.

B. Clarifying example

A sample of 600 points in IR is obtained from a uniform
probability function with support [0, 1]. One half of the available
points are used as set D. The other half is used as a test set. Then
for every point in the test set, equation (6) is used to estimate the
empirical probability density function associated with the considered
pairs (c, γ).

Figure 1 shows the empirical probability density functions esti-
mated using different values of the parameters c and γ. In this case,
c = 1.5 and γ = 5 is the pair that achieves the best fit for the
distribution proposed in this example.

IV. INTERVAL ESTIMATION

This section presents the methodology to obtain, given xk ∈ X , an
interval estimation of the corresponding output yk. Given xk ∈ X ,
the data set

D = {
[

yi
xi

]
: i = 1, . . . , N } ⊂ Y × X ,
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Fig. 1. Estimated probability distribution functions.

and the non negative scalars c and γ, the empirical conditional p.d.f.
in Y × X is defined as

ecpγ,c(y, xk,D) =

exp

(
−cJγ(

[
y
xk

]
,D)

)
∫
Y
exp

(
−cJγ(

[
ŷ
xk

]
,D)

)
dŷ

, ∀y ∈ Y.

The empirical conditional p.d.f. serves to model the probability of y
given the occurrence of xk. We now show how to use this notion to
compute, given xk, an interval estimation of yk.

First, in order to simplify the numerical integration required to
compute the interval estimations, we approximate set Y with a set Ȳ
of finite cardinality. That is, we consider the set

Ȳ = {ȳ1, . . . , ȳM},

where ȳj < ȳj+1, j = 1, . . . ,M − 1, and the extreme values of
Ȳ are chosen to guarantee that yk belongs to [ȳ1, ȳM ] with high
probability. A reasonable procedure to construct set Ȳ is to define
ȳ1, . . . , ȳM as follows

ȳ1 = min
i=1,...,N

yi

ȳM = max
i=1,...,N

yi

ȳj = ȳ1 +

(
ȳM − ȳ1
M − 1

)
(j − 1), j = 2, . . . ,M − 1.

We notice that larger values of M provide better approximations of
Y at the expense of a larger computational burden. Given xk ∈ X ,
we define the discrete empirical conditional distribution, defined at
each point of Ȳ , as

ecpγ,c(y, xk,D) =

exp

(
−cJγ(

[
y
xk

]
,D)

)
M∑
j=1

exp

(
−cJγ(

[
ȳj
xk

]
,D)

) . (7)

By construction,

M∑
ℓ=1

ecpγ,c(ȳℓ, xk,D) = 1.

This discrete empirical conditional p.d.f. defines a conditioned prob-
ability distribution on Ȳ (given xk), that we denote ProbȲ|xk .
According to this discrete distribution, we have that ȳℓ (i.e. the ℓ-th
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element of Ȳ) satisfies,

ProbȲ|xk {y ≤ ȳℓ} =

ℓ∑
j=1

ecpγ,c(ȳj , xk,D), (8)

ProbȲ|xk {y ≥ ȳℓ} =

M∑
j=ℓ

ecpγ,c(ȳj , xk,D). (9)

Given xk, γ ≥ 0 and c ≥ 0, and τ ∈ (0, 1), we define the empirical
upper conditioned τ -quantile, denoted by y+τ , as the smallest element
of Ȳ that satisfies

ProbȲ|xk {y ≤ y+τ } ≥ 1− τ.

In a similar way, the empirical lower conditional τ -quantile, denoted
by y−τ , is defined as the largest element of Ȳ that satisfies

ProbȲ|xk {y ≥ y−τ } ≥ 1− τ.

Given xk and τ ∈ (0, 1), the interval prediction for yk is [y−τ , y+τ ].
According to the discrete distribution ProbȲ|xk , and the definition
of y−τ and y+τ we have

ProbȲ|xk{y ∈ [y−τ , y+τ ]} ≥ 1− 2τ.

What precedes illustrates how to compute the interval prediction
[y−τ , y+τ ], for a given xk, τ and pair (γ, c). See Algorithm 1 for
a detailed description of the procedure.

Remark 5 (Conditioned median): Given the occurrence of xk, a
sensible estimation for yk is the conditioned median ym(xk, γ, c),
that can be approximated by the center of the interval [y−0.5, y

+
0.5].

Algorithm 1 Interval estimation [y−τ (x, γ, c), y+τ (x, γ, c)].

Require: x, τ ∈ (0, 1), γ ≥ 0, c ≥ 0, D, Ȳ = {ȳ1, . . . , ȳM}.
Output: y−τ , y+τ .

1: Obtain the dissimilarity function (see Definition 1) for each
element of Ȳ:

dj = Jγ

([
ȳj
x

]
,D
)
, j = 1, . . . ,M.

2: Compute the conditioned probabilities (see equation 7):

pj = ecpγ,c(ȳj , x,D) =
exp

(
−cdj

)
M∑
ℓ=1

exp (−cdℓ)

, j = 1, . . . ,M.

3: Compute the indexes ℓ+τ and ℓ−τ corresponding to the lower and
upper conditioned τ -quantiles (see (8) and (9)):

ℓ+τ = smallest integer ℓ satisfying
ℓ∑

j=1

pj ≥ 1− τ,

ℓ−τ = largest integer ℓ satisfying
M∑
j=ℓ

pj ≥ 1− τ.

4: y−τ = ȳ
ℓ−τ

and y+τ = ȳ
ℓ+τ

.

The properties of the prediction intervals obtained using the
procedure detailed above rely on the specific choice for γ and c,
since they determine the underlining empirical distribution (see the
example of section III-B). Given τ ∈ (0, 1), we now detail how
to obtain a pair (γ∗τ , c

∗
τ ) such that sharp interval estimations are

obtained, while meeting the probabilistic specifications (determined
by τ ) in a validation set

V = {
[

ỹs
x̃s

]
: s = 1, . . . , NV } ⊂ Y × X .

Let us now analyze the role of parameter c ≥ 0 in the discrete
empirical conditioned distribution given in equation (7). On the one
hand, the choice c = 0 provides a flat distribution in which each
element of Ȳ has a conditioned probability equal to 1

M . On the
other hand, large values of c provide narrow distributions centered
around the point in Ȳ that minimizes, given xk, the dissimilarity
function Jγ(·,D). Consequently, for a fixed value of γ, larger values
of c reduce the size of the obtained interval at the expense of
increasing the fraction of outputs that are not contained in the interval
estimations. Therefore, given γ, the corresponding value for c should
be chosen as the largest value of c that guarantees in the validation
set that the obtained intervals contain the outputs with the desired
probability.

Algorithm 2 Optimal value of c ≥ 0, for given γ ≥ 0 and τ ∈ (0, 1)

Require: τ ≥ 0, γ ≥ 0, cmax > 0 and ϵ > 0, D, Ȳ and the

validation data set V = {
[

ỹs
x̃s

]
: s = 1, . . . , NV } ⊂ Y×X .

Output: cγ .
1: cmin = 0.
2: while cmax − cmin ≥ ϵ do
3: c = 1

2 (cmax + cmin).
4: Compute, using Algorithm 1, the NV intervals

Is = [y−τ (x̃s, γ, c), y
+
τ (x̃s, γ, c)], s = 1, . . . , NV .

5: Make n+
viol equal to the number of violations of the upper

constraints

ỹs ≤ y+τ (x̃s, γ, c), s = 1, . . . , NV ,

and n−
viol equal to the number of violations of the lower con-

straints
ỹs ≥ y−τ (x̃s, γ, c), s = 1, . . . , NV .

6: if
max{n+

viol, n
−
viol}

NV
< τ then

7: cmin = c,
8: else
9: cmax = c.

10: end if
11: end while
12: cγ = cmin.

From the discussion above, we have that the parameter c corre-
sponding to a particular choice of γ > 0 (denoted cγ ) is determined
by τ . As it is detailed in Algorithm 2, cγ is chosen as the largest value
of c (up to a given accuracy ϵ > 0) that guarantees in the validation
set that the obtained confidence intervals contain the outputs with the
desired probability. That is, non smaller than 1− 2τ .

Parameter γ > 0 can be obtained maximizing the likelihood ratio
which, for a specific γ and corresponding cγ , is defined as

Lγ =

NV∑
s=1

log
(

ecpγ,cγ (ỹj , x̃j ,D)
)

Using Ȳ = {ȳ1, . . . , ȳM}, a numerical approximation to the optimal
value of γ is given by

γ∗τ ≈ argmax
γ∈Γ

NV∑
s=1

log


exp

(
−cγJγ(

[
ỹs
x̃s

]
,D)

)
M∑
j=1

exp

(
−cγJγ(

[
ȳj
x̃s

]
,D)

)
 , (10)

where Γ is a set containing all the possible values considered for γ.
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Remark 6: Other criteria can be used to compute γ∗τ . For example,
γ∗τ could be obtained by minimizing a cost function Qγ that penalizes
the average length of the intervals and/or the average prediction error
with respect to the conditioned median introduced in Remark 5. We
notice, however, that explicitly minimizing the size of the intervals
may translate into an increased violation rate when the validation set
has not a sufficiently large number of samples.

V. EXAMPLE

The Lorenz attractor is a system of ODEs known for having chaotic
solutions with certain values of the parameters of the system. The
equations that define the system are the following

do
dt

= σ(p− o)

dp
dt

= o(ρ− q)− p (11)

dq
dt

= op− βq ,

where σ, ρ and β are real scalar parameters. In this example, these
parameters take the values σ = 10, ρ = 28 and β = 8/3.
Furthermore, in order to obtain the necessary data, the ODEs have
been integrated numerically with a fixed time step of Ts = 0.1s and
initial conditions o(0) = 1, p(0) = 1 and q(0) = 1. Here, it is
considered the task of forecasting the one-step ahead value of o, i.e.,
yk = ok, using the two previous values of o, that is, the regressor
vector will be xk = [yk−1, yk−2]

⊤. To start with, 2500 data points
are considered, normalized in the [0, 1] range. Different sizes for the
data set D are considered in this example (200, 350 and 500 points).
The validation set V consists of 1000 data points and other 1000
data points are used as a test set, denoted by S (note that D, V and
S are mutually disjoint sets). The set Γ is taken from [0, 3] using a
0.1 sampling step. On the other hand, Ȳ is obtained from a grid of
equally distant points in the interval [−0.1893, 1.2298] sampled with
a 1.4191× 10−4 step.

Two different techniques will be considered as benchmarks. The
first one is quantile regression [24], [25], a classical method for
the estimation of conditioned quantiles. The second one is the set-
membership method described in [7], [8]. This technique is a well-
known method to generate interval bounds for a time series (usually
produced from a dynamical system). For the sake of comparison, to
guarantee that these bounds contain the output within a prescribed
probability, we choose the parameters ϵ, γ of [7] such that the
resulting empirical probability of containing a sample within the
validation set V is no smaller than 1− 2τ .

The numerical results of the proposed approach and the two
benchmark techniques are shown in table I for a [o5%, o95%] interval,
that is, τ = 0.05, and in table II for [o10%, o90%] (τ = 0.1). The
output of the test data should be contained in the first interval with
a probability of 0.9 (0.8 for the second interval). The optimal value
for γ has been chosen maximizing the likelihood function Lγ (see
equation (10) and figure 3).

The empirical probability in the case of the quantile regression
clearly does not meet the probabilistic specifications. In the case of
the proposed approach and the set-membership method, the observed
fraction of outputs that fall into the predicted intervals is much closer
to the desired one. Note that, for all techniques, the obtained empirical
probability can be below the desired probability. This could be solved
relying on a probabilistic scaling scheme [22] or on probabilistic
validation schemes [43], [44].

Regarding the interval width, the proposed approach clearly man-
ages to obtain the smallest intervals for each data set. For the
[o5%, o95%] interval, the interval width is on average 24.35% smaller

than those provided by the set-membership method and 35.96% than
the quantile regression. On the other hand, for the [o10%, o90%]
interval, the intervals with the proposed technique are 23.75% smaller
than those with set-membership and 28.21% than those with the
quantile regression. Taking into account the empirical probability
values and the interval widths, we can conclude that the proposed
approach obtains the best results.

Finally, in figure 2, we show the test set S along with the
computed intervals [o5%, o95%] of the proposed approach. Note that
the intervals are wider when there are trend changes in the output.
Furthermore, figure 3 shows an example of the value of the maximum
likelihood ratio Lγ as a function of γ (in this case for the data set
of 200 points and interval [o5%, o95%]).

Fig. 2. Test set and computed intervals for Lorenz Attractor (interval
[o5%, o95%]).
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Fig. 3. Maximum likelihood ratio as a function of γ.

VI. CONCLUSIONS

This work presents a new approach to obtain an interval predictor
to be used in nonlinear systems. The methodology relies on a
parameterized family of dissimilarity functions, that are used to
estimate the probability density function of the system output, con-
ditioned to last inputs and outputs. A family of empirical probability
density functions, parameterized by means of two parameters, is
proposed. It is shown that the proposed family encompasses the
multivariable normal probability density function as a particular
case. The methodology allows us to provide probabilistic interval
predictions of the output of the system. For a particular choice of
the tuning parameters, the conditional probability density function
of the output attains a maximum at the output estimated by least-
squares regression. This shows that the proposed method constitutes
a generalization of classical estimation methods. A validation scheme
is used to tune the two parameters on which the methodology relies (c
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TABLE I
RESULTS FOR THE LORENZ ATTRACTOR, INTERVAL [o5%, o95%].

Proposed approach Quantile Regression Set Membership
Data set length Empirical Probability Interval Width Empirical Probability Interval Width Empirical Probability Interval Width

200 0.9140 2.0578 0.8290 3.0965 0.8960 2.9378
350 0.8990 1.9352 0.8260 3.0550 0.9100 2.4773
500 0.9070 2.0223 0.8410 3.2450 0.9120 2.5671

TABLE II
RESULTS FOR THE LORENZ ATTRACTOR, INTERVAL [o10%, o90%].

Proposed approach Quantile Regression Set Membership
Data set length Empirical Probability Interval Width Empirical Probability Interval Width Empirical Probability Interval Width

200 0.8060 1.6053 0.7450 2.2776 0.8160 2.4248
350 0.8060 1.6164 0.7270 2.0607 0.7900 1.9797
500 0.8100 1.6195 0.7630 2.4371 0.8100 2.0021

and γ). The method has been applied to generate interval predictions,
which have been compared favourably with the ones obtained by
means of quantile regression and set-membership methods.

APPENDIX A
Proof of Property 2: Denote λ = [λ1 λ2 ... λN ]⊤. We solve the

optimization problem using a dual formulation where µ ∈ IRn+1

denotes the multipliers associated with the equality constraint

z =

N∑
i=1

λizi = Zλ,

and ν is the multiplier corresponding to the equality

1 =

N∑
i=1

λi = u⊤λ.

the Lagrange function is

L(λ, µ, ν) = λ⊤λ+ µ⊤(Zλ− z) + ν(u⊤λ− 1).

Denote λ∗, µ∗ and ν∗ the optimal values for the primal and dual
variables. From ∂L(λ∗,µ∗,ν∗)

∂λ = 0 we obtain that the optimal vector
λ∗ is given by

λ∗ = −1

2
(Z⊤µ∗ + uν∗). (12)

Since u⊤λ∗ = 1, Zu = Nz̄ and u⊤u = N we can premultiply both
terms of last equality by u⊤ to obtain

1 = −1

2
(u⊤Z⊤µ∗ +Nν∗)

= −N

2
(z̄⊤µ∗ + ν∗).

Therefore,
ν∗ = − 2

N
− z̄⊤µ∗.

Substituting the expression for ν∗ in (12) yields,

λ∗ = −1

2

(
Z⊤µ∗ − u(

2

N
+ z̄⊤µ∗)

)
=

u

N
− 1

2
(Z⊤ − uz̄⊤)µ∗. (13)

Premultiplying by Z we obtain

Zλ∗ = z̄ − 1

2
(ZZ⊤ −Nz̄z̄⊤)µ∗. (14)

From the equality constraint Zλ∗ = z and (14) we have

µ∗ = −2(ZZ⊤ −Nz̄z̄⊤)−1(z − z̄).

Substituting µ∗ in equation (13) we infer

λ∗ =
u

N
+ (Z⊤ − uz̄⊤)(ZZ⊤ −Nz̄z̄⊤)−1(z − z̄).

Finally, taking into account that

u⊤(Z⊤ − uz̄⊤) = (Nz̄⊤ −Nz̄⊤) = 0

we obtain

(Z⊤ − uz̄⊤)⊤(Z⊤ − uz̄⊤) = ZZ⊤ −Nz̄z̄⊤.

From last equality and the expression for λ∗ we conclude

J0(z,D) = (λ∗)⊤λ∗

=
1

N
+ (z − z̄)⊤(ZZ⊤ −Nz̄z̄⊤)−1(z − z̄). ■

APPENDIX B

Proof of Property 3: From equation (5) we have that the optimal

value for the estimation is ŷk = y∗ =
N∑
i=1

λ∗i yi, where for the

particular case γ = 0, λ∗i , i = 1, . . . , N , are the optimal values of
the optimization problem

min
λ1,...,λN

N∑
i=1

λ2i

s.t. xk =

N∑
i=1

λixi

1 =

N∑
i=1

λi.

Defining

R =

[
x1 x2 . . . xN
1 1 . . . 1

]
, rk =

[
xk
1

]
,

we have that the equality constraints can be rewritten as

Rλ = rk, (15)

where λ =
[
λ1 λ2 . . . λN

]⊤. From the Karush-Kuhn-
Tucker optimality conditions we infer that the optimal solution is
given by (see subsection 10.1.1 in [37])[

I R⊤

R 0

] [
λ∗

φ∗

]
=

[
0
rk

]
,
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where φ∗ corresponds to the optimal dual decision variables cor-
responding to the equality constraint (15), (see [37]). The previous
equation can be rewritten as

λ∗ = −R⊤φ∗

Rλ∗ = rk.

From here we obtain −RR⊤φ∗ = rk which implies φ∗ =
−(RR⊤)−1rk. We finally obtain

λ∗ = R⊤(RR⊤)−1rk.

Therefore,

ŷk = Y ⊤λ∗

= Y ⊤R⊤(RR⊤)−1rk

= r⊤k (RR⊤)−1RY,

where Y =
[
y1 y2 . . . yN

]⊤. We notice that this corre-
sponds to the least squares estimation obtained when we consider as

regressors the vectors
[

x⊤j 1
]⊤

, j = 1, . . . , N (see [45], [23]).
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