Mostrar el registro sencillo del ítem

Artículo

dc.creatorUreña López, Juan 
dc.creatorLópez López, J. 
dc.creatorGonzález Montelongo, M. Carmen 
dc.creatorLópez Barneo, José 
dc.date.accessioned2015-01-14T13:52:29Z
dc.date.available2015-01-14T13:52:29Z
dc.date.issued1989
dc.identifier.issn1540-7748es
dc.identifier.issn0022-1295es
dc.identifier.urihttp://hdl.handle.net/11441/17477
dc.description.abstractIonic currents of enzymatically dispersed type I and type II cells of the carotid body have been studied using the whole cell variant of the patch-clamp technique. Type II cells only have a tiny, slowly activating outward potassium current. By contrast, in every type I chemoreceptor cell studied we found (a) sodium, (b) calcium, and (c) potassium currents. (a) The sodium current has a fast activation time course and an activation threshold at approximately -40 mV. At all voltages inactivation follows a single exponential time course. The time constant of inactivation is 0.67 ms at 0 mV. Half steady state inactivation occurs at a membrane potential of approximately -50 mV. (b) The calcium current is almost totally abolished when most of the external calcium is replaced by magnesium. The activation threshold of this current is at approximately -40 mV and at 0 mV it reaches a peak amplitude in 6-8 ms. The calcium current inactivates very slowly and only decreases to 27% of the maximal value at the end of 300-ms pulses to 40 mV. The calcium current was about two times larger when barium ions were used as charge carriers instead of calcium ions. Barium ions also shifted 15-20 mV toward negative voltages the conductance vs. voltage curve. Deactivation kinetics of the calcium current follows a biphasic time course well fitted by the sum of two exponentials. At -80 mV the slow component has a time constant of 1.3 +/- 0.4 ms whereas the fast component, with an amplitude about 20 times larger than the slow component, has a time constant of 0.16 +/- 0.03 ms. These results suggest that type I cells have predominantly fast deactivating calcium channels. The slow component of the tails may represent the activity of a small population of slowly deactivating calcium channels, although other possibilities are considered. (c) Potassium current seems to be mainly due to the activity of voltage-dependent potassium channels, but a small percentage of calcium-activated channels may also exist. This current activates slowly, reaches a peak amplitude in 5-10 ms, and thereafter slowly inactivates. Inactivation is almost complete in 250-300 ms. The potassium current is reversibly blocked by tetraethylammonium. Under current-clamp conditions type I cells can spontaneously fire large action potentials. These results indicate that type I cells are excitable and have a variety of ionic conductances. We suggest a possible participation of these conductances in chemoreception.es
dc.language.isoenges
dc.relation.ispartofThe Journal of general physiology, 93 (5), 979-999.es
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleIonic currents in dispersed chemoreceptor cells of the mammalian carotid bodyes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Fisiología Médica y Biofísicaes
dc.journaltitleThe Journal of general physiologyes
dc.publication.volumen93es
dc.publication.issue5es
dc.publication.initialPage979es
dc.publication.endPage999es
dc.identifier.idushttps://idus.us.es/xmlui/handle/11441/17477

FicherosTamañoFormatoVerDescripción
Ionic currents in dispersed ...1.139MbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 4.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como: Atribución-NoComercial-SinDerivadas 4.0 España