Show simple item record

Presentation

dc.creatorCasanueva Morato, Danieles
dc.creatorLópez Osorio, Pabloes
dc.creatorPiñero Fuentes, Enriquees
dc.creatorDomínguez Morales, Juan Pedroes
dc.creatorPérez Peña, Fernandoes
dc.creatorLinares Barranco, Alejandroes
dc.date.accessioned2024-07-09T10:09:51Z
dc.date.available2024-07-09T10:09:51Z
dc.date.issued2024
dc.identifier.citationCasanueva Morato, D., López Osorio, P., Piñero Fuentes, E., Domínguez Morales, J.P., Pérez Peña, F. y Linares Barranco, A. (2024). Integrating a hippocampus memory model into a neuromorphic robotic-arm for trajectory navigation. En 2024 IEEE International Symposium on Circuits and Systems (ISCAS) (1-5), Singapore: IEEE Circuits and Systems Society..
dc.identifier.urihttps://hdl.handle.net/11441/161208
dc.description.abstractNeuromorphic engineering endeavors to integrate the computational prowess and efficiency inherent in biological neuronal systems, such as the brain, into contemporary technological systems, primarily through the deployment of spiking neural networks. This research delineates the development and implementation of a bio-inspired sequential hippocampus memory model, which can effectively learn and sequentially recall memories, within a robotic infrastructure. The hippocampus memory model, implemented on the SpiNNaker platform, has been tactically utilized to control a 4-joint event-based robot arm, the ED-ScorBot, by learning and then recalling trajectories via a sequence of memories regarding joint positions. The conveyed spiking information from SpiNNaker is interpreted by an FPGA in real-time to command the event-driven motors of the robotic arm, integrating learned trajectories into physical robotic movement. An empirical exploration validates the model’s capability to govern the robotic arm’s trajectory with precision and dependability while simultaneously demonstrating the potential for incorporating spike-based memory models in robotic applications. This synergistic convergence of neuromorphic engineering and robotics illustrates a viable pathway towards sophisticated, efficient, and adaptable robotic systems capable of learning and reproducing complex tasks, with significant implications for future developments in autonomous robotic applications.es
dc.formatapplication/pdfes
dc.format.extent6es
dc.language.isoenges
dc.publisherIEEE Circuits and Systems Society.es
dc.relation.ispartof2024 IEEE International Symposium on Circuits and Systems (ISCAS) (2024), pp. 1-5.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectNeuromorphic engineeringes
dc.subjectHyppocampus memory modeles
dc.subjectSpiNNaker platformes
dc.subjectRobotic applicationses
dc.subjectFPGAes
dc.titleIntegrating a hippocampus memory model into a neuromorphic robotic-arm for trajectory navigationes
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Arquitectura y Tecnología de Computadoreses
dc.identifier.doi10.1109/ISCAS58744.2024.10558362es
dc.publication.initialPage1es
dc.publication.endPage5es
dc.eventtitle2024 IEEE International Symposium on Circuits and Systems (ISCAS)es
dc.eventinstitutionSingaporees

FilesSizeFormatViewDescription
Integrating_a_hippocampus_memo ...1.192MbIcon   [PDF] View/Open  

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as: Attribution-NonCommercial-NoDerivatives 4.0 Internacional