Mostrar el registro sencillo del ítem

Artículo

dc.creatorDong, Kaikaies
dc.creatorLuo, Jianjunes
dc.creatorLimón Marruedo, Danieles
dc.date.accessioned2024-01-18T18:54:03Z
dc.date.available2024-01-18T18:54:03Z
dc.date.issued2022-11
dc.identifier.issn0094-5765es
dc.identifier.urihttps://hdl.handle.net/11441/153627
dc.description.abstractThis study proposes a novel, safe, and stable-by-design model predictive control (MPC) framework for multistage autonomous rendezvous and docking (AR&D) with a tumbling target, considering several practical challenges (e.g., control saturation, velocity constraints, and collision avoidance) in dock-enabling conditions. In the first stage, global near-optimal and deterministic convergent strategies are designed to drive the chaser to a time-varying line-of-sight (LOS) region within a few steps. The proposed controller includes a terminal constraint to ensure recursive feasibility and stability. In the second stage, the proposed controller is a periodic MPC for tracking under the novel framework, whose reference to be followed is the trajectory of the docking port of the tumbling target. This controller combines trajectory planning and control in a single layer, thereby improving the real-time performance of the algorithm. Moreover, the novel MPC framework incorporates a terminal constraint that guarantees that the closed-loop system enjoys recursive feasibility, safe evolution, and asymptotic convergence to the optimal admissible periodic trajectory with respect to the trajectory of the target docking port. The simulation results verified the efficiency of the proposed control strategyes
dc.description.sponsorshipMinisterio de Ciencia e Innovación PID2019-106212RB-C41es
dc.formatapplication/pdfes
dc.format.extent12 p.es
dc.language.isoenges
dc.publisherElsevieres
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectAutonomous rendezvous and dockinges
dc.subjectDeterministic convergentes
dc.subjectNovel MPC frameworkes
dc.subjectSafe and stable-by-designes
dc.subjectTime variant LOS regiones
dc.subjectTumbling targetes
dc.titleA novel stable and safe model predictive control framework for autonomous rendezvous and docking with a tumbling targetes
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Ingeniería de Sistemas y Automáticaes
dc.relation.projectIDPID2019-106212RB-C41es
dc.relation.projectIDMCIN/AEI/10.1309/501100011033es
dc.date.embargoEndDate2024-12
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0094576522004179es
dc.identifier.doi10.1016/j.actaastro.2022.08.012es
dc.contributor.groupUniversidad de Sevilla. TEP950: Estimación, Predicción, Optimización y Controles
dc.journaltitleActa Astronauticaes
dc.publication.volumen200es
dc.publication.initialPage176es
dc.publication.endPage187es
dc.contributor.funderMinisterio de Ciencia e Innovación (MICIN). Españaes
dc.contributor.funderAgencia Estatal de Investigación. Españaes

FicherosTamañoFormatoVerDescripción
AA_2022_Dong_Luo_Limon_A novel ...1.215MbIcon   [PDF] Este documento no está disponible a texto completo   hasta el  2024-12 . Para más información póngase en contacto con idus@us.es.Versión aceptada

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional