Mostrar el registro sencillo del ítem

Artículo

dc.creatorRuiz-Moreno, Saraes
dc.creatorGallego Len, Antonio Javieres
dc.creatorSánchez, Adolfo J.es
dc.creatorCamacho, Eduardo F.es
dc.date.accessioned2023-05-09T10:25:38Z
dc.date.available2023-05-09T10:25:38Z
dc.date.issued2023-07
dc.identifier.citationRuiz-Moreno, S., Gallego Len, A.J., Sánchez, A.J. y Camacho, E.F. (2023). A cascade neural network methodology for fault detection and diagnosis in solar thermal plants. Renewable Energy, 211, 76-86. https://doi.org/10.1016/j.renene.2023.04.051.
dc.identifier.issn1879-0682es
dc.identifier.issn0960-1481es
dc.identifier.urihttps://hdl.handle.net/11441/145687
dc.description.abstractDetecting and isolating faults in collector fields of solar thermal power plants is a crucial and challenging task. The system variables in the collector area are highly coupled, which can lead to a high misclassification rate. For this reason, it becomes necessary to combine knowledge of systems engineering with machine learning techniques that unravel the complex dynamics that govern the systems using historical data. Furthermore, the performance of a solar thermal plant is highly dependent on solar irradiance which changes during the day and is subject to perturbations caused by clouds and other atmospheric conditions. Detecting the fault requires using techniques that cope with the disturbances in solar irradiance. In this work, real irradiance profiles with many types of clouds are used. First, a model-based fault detector is applied, obtaining an accuracy of over 89% for all test irradiances. Then, different machine learning techniques are compared: static neural networks with and without decoupling strategy, dynamic neural networks, dynamic neural networks in cascade, classification trees, random forests, radial basis function networks, and self-organizing maps. The combination of neural networks was the only method that obtained a total accuracy of over 73% and F1-scores over 50% for all the test irradiance profiles.es
dc.formatapplication/pdfes
dc.format.extent11 p.es
dc.language.isoenges
dc.publisherElsevieres
dc.relation.ispartofRenewable Energy, 211, 76-86.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectSolar energyes
dc.subjectParabolic-trough collectorses
dc.subjectArtificial intelligencees
dc.subjectFault detectiones
dc.subjectFault diagnosises
dc.titleA cascade neural network methodology for fault detection and diagnosis in solar thermal plantses
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Ingeniería de Sistemas y Automáticaes
dc.relation.projectIDOCONTSOLAR, grant agreement No 789051es
dc.relation.projectIDFPU20/01958es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0960148123005013es
dc.identifier.doi10.1016/j.renene.2023.04.051es
dc.contributor.groupUniversidad de Sevilla. TEP-116: Automática y robótica industriales
idus.validador.notaThis is an open access article under the CC BY-NC-ND license.es
dc.journaltitleRenewable Energyes
dc.publication.volumen211es
dc.publication.initialPage76es
dc.publication.endPage86es
dc.contributor.funderEuropean Research Council (ERC)es
dc.contributor.funderMinisterio de Ciencia, Innovación y Universidades (MICINN). Españaes

FicherosTamañoFormatoVerDescripción
Ruiz Moreno_2023_Renewable ...1017.KbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional