Mostrar el registro sencillo del ítem

Artículo

dc.creatorLambden, Simones
dc.creatorCowburn, Andrew S.es
dc.creatorMacías, Davides
dc.creatorGarrud, Tessa A. C.es
dc.creatorKrause, Bernardo J.es
dc.creatorGiussani, Dino A.es
dc.creatorSummers, Charlottees
dc.creatorJohnson, Randall S.es
dc.date.accessioned2022-11-15T18:32:07Z
dc.date.available2022-11-15T18:32:07Z
dc.date.issued2021-06-11
dc.identifier.citationLambden, S., Cowburn, A.S., Macías, D., Garrud, T.A.C., Krause, B.J., Giussani, D.A.,...,Johnson, R.S. (2021). Endothelial cell regulation of systemic haemodynamics and metabolism acts through the HIF transcription factors. Intensive Care Medicine Experimental (ICMx), 9 (1), 28. https://doi.org/10.1186/s40635-021-00390-y.
dc.identifier.issn2197-425Xes
dc.identifier.urihttps://hdl.handle.net/11441/139464
dc.description.abstractBackground The vascular endothelium has important endocrine and paracrine roles, particularly in the regulation of vascular tone and immune function, and it has been implicated in the pathophysiology of a range of cardiovascular and inflammatory conditions. This study uses a series of transgenic murine models to explore for the first time the role of the hypoxia-inducible factors, HIF-1α and HIF-2α in the pulmonary and systemic circulations as potential regulators of systemic vascular function in normoxic or hypoxic conditions and in response to inflammatory stress. We developed a series of transgenic mouse models, the HIF-1α Tie2Cre, deficient in HIF1-α in the systemic and pulmonary vascular endothelium and the L1Cre, a pulmonary endothelium specific knockout of HIF-1α or HIF-2α. In vivo, arterial blood pressure and metabolic activity were monitored continuously in normal atmospheric conditions and following an acute stimulus with hypoxia (10%) or lipopolysaccharide (LPS). Ex vivo, femoral artery reactivity was assessed using wire myography. Results Under normoxia, the HIF-1α Tie2Cre mouse had increased systolic and diastolic arterial pressure compared to litter mate controls over the day–night cycle under normal environmental conditions. VO2 and VCO2 were also increased. Femoral arteries displayed impaired endothelial relaxation in response to acetylcholine mediated by a reduction in the nitric oxide dependent portion of the response. HIF-1α L1Cre mice displayed a similar pattern of increased systemic blood pressure, metabolic rate and impaired vascular relaxation without features of pulmonary hypertension, polycythaemia or renal dysfunction under normal conditions. In response to acute hypoxia, deficiency of HIF-1α was associated with faster resolution of hypoxia-induced haemodynamic and metabolic compromise. In addition, systemic haemodynamics were less compromised by LPS treatment. Conclusions These data show that deficiency of HIF-1α in the systemic or pulmonary endothelium is associated with increased systemic blood pressure and metabolic rate, a pattern that persists in both normoxic conditions and in response to acute stress with potential implications for our understanding of the pathophysiology of vascular dysfunction in acute and chronic disease.es
dc.formatapplication/pdfes
dc.format.extent14 p.es
dc.language.isoenges
dc.publisherSpringerOpenes
dc.relation.ispartofIntensive Care Medicine Experimental (ICMx), 9 (1), 28.
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleEndothelial cell regulation of systemic haemodynamics and metabolism acts through the HIF transcription factorses
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Fisiología Médica y Biofísicaes
dc.relation.publisherversionhttps://icm-experimental.springeropen.com/articles/10.1186/s40635-021-00390-yes
dc.identifier.doi10.1186/s40635-021-00390-yes
dc.journaltitleIntensive Care Medicine Experimental (ICMx)es
dc.publication.volumen9es
dc.publication.issue1es
dc.publication.initialPage28es

FicherosTamañoFormatoVerDescripción
Endothelial cell regulation of ...2.442MbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Atribución 4.0 Internacional