Mostrar el registro sencillo del ítem

Artículo

dc.creatorMayoral González, Isabeles
dc.creatorBevilacqua, Elisaes
dc.creatorGómez, Gorkaes
dc.creatorHmadcha, Abdelkrimes
dc.creatorGonzález-Loscertales, Ignacioes
dc.creatorReina Romo, Estheres
dc.creatorSotelo, Julioes
dc.creatorDomínguez, Antoniaes
dc.creatorPérez Alcántara, Pedroes
dc.creatorSmani, Youneses
dc.creatorGonzález Puertas, Patricia Isabeles
dc.creatorMéndez, Anaes
dc.creatorUribe, Sergioes
dc.creatorSmani Hajami, Tarikes
dc.creatorOrdóñez, Antonioes
dc.creatorValverde Pérez, Israeles
dc.date.accessioned2022-08-26T08:57:55Z
dc.date.available2022-08-26T08:57:55Z
dc.date.issued2022-03
dc.identifier.citationMayoral González, I., Bevilacqua, E., Gómez, G., Hmadcha, A., González-Loscertales, I., Reina Romo, E.,...,Valverde Pérez, I. (2022). Tissue engineered in-vitro vascular patch fabrication using hybrid 3D printing and electrospinning. Materials Today Bio, 14, 100252.
dc.identifier.issn2590-0064es
dc.identifier.urihttps://hdl.handle.net/11441/136473
dc.description.abstractThree-dimensional (3D) engineered cardiovascular tissues have shown great promise to replace damaged structures. Specifically, tissue engineering vascular grafts (TEVG) have the potential to replace biological and synthetic grafts. We aimed to design an in-vitro patient-specific patch based on a hybrid 3D print combined with vascular smooth muscle cells (VSMC) differentiation. Based on the medical images of a 2 months-old girl with aortic arch hypoplasia and using computational modelling, we evaluated the most hemodynamically efficient aortic patch surgical repair. Using the designed 3D patch geometry, the scaffold was printed using a hybrid fused deposition modelling (FDM) and electrospinning techniques. The scaffold was seeded with multipotent mesenchymal stem cells (MSC) for later maturation to derived VSMC (dVSMC). The graft showed adequate resistance to physiological aortic pressure (burst pressure 101 ​± ​15 ​mmHg) and a porosity gradient ranging from 80 to 10 ​μm allowing cells to infiltrate through the entire thickness of the patch. The bio-scaffolds showed good cell viability at days 4 and 12 and adequate functional vasoactive response to endothelin-1. In summary, we have shown that our method of generating patient-specific patch shows adequate hemodynamic profile, mechanical properties, dVSMC infiltration, viability and functionality. This innovative 3D biotechnology has the potential for broad application in regenerative medicine and potentially in heart disease prevention.es
dc.description.sponsorship​Instituto de Salud Carlos III - FEDER - Fondo Social Europeo PI20/00467es
dc.description.sponsorshipInstituto de Salud Carlos III PI17/01409, PT20/00069es
dc.description.sponsorshipFundación Menudos Corazones - Sociedad Española de Cardiología Pediátrica y Cardiopatías Congénitas (SECPCC) Beca ‘Menudos Corazones 2020’es
dc.description.sponsorshipMinisterio de Economía y Competitividad PID2019-104084GB-C22es
dc.description.sponsorshipANID – Millennium Science Initiative Program ICN2021_004, NCN17_129es
dc.description.sponsorshipANID FONDECYT #11200481, #1181057es
dc.formatapplication/pdfes
dc.format.extent12 p.es
dc.language.isoenges
dc.publisherElsevieres
dc.relation.ispartofMaterials Today Bio, 14, 100252.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject3D printinges
dc.subjectElectrospinninges
dc.subjectMesenchymal stem cellses
dc.subjectTissue engineeringes
dc.subjectVascular graftes
dc.titleTissue engineered in-vitro vascular patch fabrication using hybrid 3D printing and electrospinninges
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Ingeniería Mecánica y Fabricaciónes
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Farmacología, Pediatría y Radiologíaes
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Fisiología Médica y Biofísicaes
dc.relation.projectIDPI20/00467es
dc.relation.projectIDPI17/01409es
dc.relation.projectIDPT20/00069es
dc.relation.projectIDBeca ‘Menudos Corazones 2020’es
dc.relation.projectIDPID2019-104084GB-C22es
dc.relation.projectIDICN2021_004es
dc.relation.projectID#11200481es
dc.relation.projectID#1181057es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S2590006422000503es
dc.identifier.doi10.1016/j.mtbio.2022.100252es
dc.contributor.groupUniversidad de Sevilla. TEP111: Ingeniería mecánicaes
dc.contributor.groupUniversidad de Sevilla. CTS200: Transplante corazón. Conservación corazón donante.es
idus.validador.notaUnder a Creative Commons license Open accesses
dc.journaltitleMaterials Today Bioes
dc.publication.volumen14es
dc.publication.initialPage100252es

FicherosTamañoFormatoVerDescripción
Reina_2022_Materials Today ...3.240MbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional