Repositorio de producción científica de la Universidad de Sevilla

A note on uniformly dominated sets of summing operators

 

Advanced Search
 

Show simple item record

dc.creator Delgado Sánchez, Juan Manuel es
dc.creator Piñeiro Gómez, Cándido es
dc.date.accessioned 2019-07-01T08:04:29Z
dc.date.available 2019-07-01T08:04:29Z
dc.date.issued 2002
dc.identifier.citation Delgado Sánchez, J.M. y Piñeiro Gómez, C. (2002). A note on uniformly dominated sets of summing operators. International Journal of Mathematics and Mathematical Sciences, 29 (5), 307-312.
dc.identifier.issn 1687-0425 es
dc.identifier.uri https://hdl.handle.net/11441/87683
dc.description.abstract Let Y be a Banach space that has no finite cotype and p a real number satisfying 1≤p<∞. We prove that a set ℳ⊂Πp(X,Y) is uniformly dominated if and only if there exists a constant C>0 such that, for every finite set {(xi,Ti):i=1,…,n}⊂X×ℳ, there is an operator T∈Πp(X,Y) satisfying πp(T)≤C and ‖Tixi‖≤‖Txi‖ for i=1,…,n. es
dc.format application/pdf es
dc.language.iso eng es
dc.relation.ispartof International Journal of Mathematics and Mathematical Sciences, 29 (5), 307-312.
dc.rights Attribution-NonCommercial-NoDerivatives 4.0 Internacional *
dc.rights Attribution-NonCommercial-NoDerivatives 4.0 Internacional *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0/ *
dc.title A note on uniformly dominated sets of summing operators es
dc.type info:eu-repo/semantics/article es
dc.type.version info:eu-repo/semantics/publishedVersion es
dc.rights.accessrights info:eu-repo/semantics/openAccess es
dc.contributor.affiliation Universidad de Sevilla. Departamento de Matemática Aplicada I (ETSII) es
dc.identifier.doi 10.1155/S0161171202007688 es
idus.format.extent 7 es
dc.journaltitle International Journal of Mathematics and Mathematical Sciences es
dc.publication.volumen 29 es
dc.publication.issue 5 es
dc.publication.initialPage 307 es
dc.publication.endPage 312 es
Size: 2.198Mb
Format: PDF

This item appears in the following Collection(s)

Show simple item record