Repositorio de producción científica de la Universidad de Sevilla

La desigualdad de Von Neumann y la teoría de dilatación

Opened Access La desigualdad de Von Neumann y la teoría de dilatación
Estadísticas
Icon
Exportar a
Autor: Constantino Oitavén, Carlos
Director: Lacruz Martín, Miguel Benito
Rodríguez Piazza, Luis
Fecha: 2018-09
Tipo de documento: Trabajo Fin de Master
Titulación: Universidad de Sevilla. Máster Universitario en Matemáticas
Resumen: A famous inequality by von Neumann states that if T is a contraction on a Hilbert space and p is a polynomial, then kp(T)k ≤ sup{|p(z)| : z ∈ C, |z| ≤ 1}. As time went on, this inequality has given rise to a large variety of results estimulating this question. The natural way to generalize this inequality concerns contractions T1, . . . , Tn that commute on a common Hilbert space. Is it true that, for any polynomial p(z1, . . . , zn) in n variables, kp(T1, . . . , Tn)k ≤ sup{|p(z1, . . . , zn)| : zi ∈ C, |zi | ≤ 1, i = 1, . . . , n}? The answer is partial. The major steps in answering this question are due to T. Ando and N. Varopoulos, as much in positive and negative cases, respectively. The aim of this work is to present an elegant proof using dilation theory, whose main forefather is Sz. Nagy, of the original von Neumann’s inequality, as well as describing its generalization for two commuting contractions, and some counterexamples on a finite-dimensional Hilbert space, emphasizi...
[Ver más]
Tamaño: 552.4Kb
Formato: PDF

URI: https://hdl.handle.net/11441/79506

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones