Repositorio de producción científica de la Universidad de Sevilla

0/1-Polytopes related to Latin squares autotopisms

Opened Access 0/1-Polytopes related to Latin squares autotopisms
Estadísticas
Icon
Exportar a
Autor: Falcón Ganfornina, Raúl Manuel
Departamento: Universidad de Sevilla. Departamento de Matemática Aplicada I (ETSII)
Fecha: 2008
Publicado en: VI Jornadas de matemática discreta y algorítmica (2008), p 311-319
ISBN/ISSN: 978-84-8409-263-6
Tipo de documento: Ponencia
Resumen: The set LS(n) of Latin squares of order n can be represented in Rn3 as a (n−1)3-dimensional 0/1-polytope. Given an autotopism Θ=(α,β,γ)∈An, we study in this paper the 0/1-polytope related to the subset of LS(n) having Θ in their autotopism group. Specifically, we prove that this polyhedral structure is generated by a polytope in R((nα−l1α)⋅n2+l1α⋅nβ⋅n)(l1α⋅l1β⋅(n−l1γ)+l1α⋅l1γ⋅(nβ−l1β)+l1β⋅l1γ⋅(nα−l1α)), where nα and nβ are the number of cycles of α and β, respectively, and l1δ is the number of fixed points of δ, for all δ∈{α,β,γ}. Moreover, we study the dimension of these two polytopes for Latin squares of order up to 9.
Cita: Falcón Ganfornina, R.M. (2008). 0/1-Polytopes related to Latin squares autotopisms. En VI Jornadas de matemática discreta y algorítmica, Lérida.
Tamaño: 7.929Mb
Formato: PDF

URI: https://hdl.handle.net/11441/69217

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones