Repositorio de producción científica de la Universidad de Sevilla

0/1-Polytopes related to Latin squares autotopisms


Advanced Search
Opened Access 0/1-Polytopes related to Latin squares autotopisms
Show item statistics
Export to
Author: Falcón Ganfornina, Raúl Manuel
Department: Universidad de Sevilla. Departamento de Matemática Aplicada I (ETSII)
Date: 2008
ISBN/ISSN: 978-84-8409-263-6
Document type: Presentation
Abstract: The set LS(n) of Latin squares of order n can be represented in Rn3 as a (n−1)3-dimensional 0/1-polytope. Given an autotopism Θ=(α,β,γ)∈An, we study in this paper the 0/1-polytope related to the subset of LS(n) having Θ in their autotopism group. Specifically, we prove that this polyhedral structure is generated by a polytope in R((nα−l1α)⋅n2+l1α⋅nβ⋅n)(l1α⋅l1β⋅(n−l1γ)+l1α⋅l1γ⋅(nβ−l1β)+l1β⋅l1γ⋅(nα−l1α)), where nα and nβ are the number of cycles of α and β, respectively, and l1δ is the number of fixed points of δ, for all δ∈{α,β,γ}. Moreover, we study the dimension of these two polytopes for Latin squares of order up to 9.
Cite: Falcón Ganfornina, R.M. (2008). 0/1-Polytopes related to Latin squares autotopisms. En VI Jornadas de matemática discreta y algorítmica, Lérida.
Size: 7.929Mb
Format: PDF


This work is under a Creative Commons License: 
Attribution-NonCommercial-NoDerivatives 4.0 Internacional

This item appears in the following Collection(s)