Show simple item record

Presentation

dc.creatorFalcón Ganfornina, Raúl Manueles
dc.date.accessioned2018-01-19T12:09:13Z
dc.date.available2018-01-19T12:09:13Z
dc.date.issued2008
dc.identifier.citationFalcón Ganfornina, R.M. (2008). 0/1-Polytopes related to Latin squares autotopisms. En VI Jornadas de matemática discreta y algorítmica, Lérida.
dc.identifier.isbn978-84-8409-263-6es
dc.identifier.urihttps://hdl.handle.net/11441/69217
dc.description.abstractThe set LS(n) of Latin squares of order n can be represented in Rn3 as a (n−1)3-dimensional 0/1-polytope. Given an autotopism Θ=(α,β,γ)∈An, we study in this paper the 0/1-polytope related to the subset of LS(n) having Θ in their autotopism group. Specifically, we prove that this polyhedral structure is generated by a polytope in R((nα−l1α)⋅n2+l1α⋅nβ⋅n)(l1α⋅l1β⋅(n−l1γ)+l1α⋅l1γ⋅(nβ−l1β)+l1β⋅l1γ⋅(nα−l1α)), where nα and nβ are the number of cycles of α and β, respectively, and l1δ is the number of fixed points of δ, for all δ∈{α,β,γ}. Moreover, we study the dimension of these two polytopes for Latin squares of order up to 9.es
dc.formatapplication/pdfes
dc.language.isoenges
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.title0/1-Polytopes related to Latin squares autotopismses
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.type.versioninfo:eu-repo/semantics/submittedVersiones
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Matemática Aplicada I (ETSII)es
idus.format.extent8 p.es
dc.publication.initialPage311es
dc.publication.endPage319es
dc.eventtitleVI Jornadas de matemática discreta y algorítmicaes
dc.eventinstitutionLéridaes

FilesSizeFormatViewDescription
polytope.pdf7.929MbIcon   [PDF] View/Open  

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as: Attribution-NonCommercial-NoDerivatives 4.0 Internacional