Presentation
0/1-Polytopes related to Latin squares autotopisms
Author/s | Falcón Ganfornina, Raúl Manuel |
Department | Universidad de Sevilla. Departamento de Matemática Aplicada I (ETSII) |
Publication Date | 2008 |
Deposit Date | 2018-01-19 |
ISBN/ISSN | 978-84-8409-263-6 |
Abstract | The set LS(n) of Latin squares of order n can be represented in Rn3 as a (n−1)3-dimensional 0/1-polytope. Given an autotopism Θ=(α,β,γ)∈An, we study in this paper the 0/1-polytope related to the subset of LS(n) having Θ ... The set LS(n) of Latin squares of order n can be represented in Rn3 as a (n−1)3-dimensional 0/1-polytope. Given an autotopism Θ=(α,β,γ)∈An, we study in this paper the 0/1-polytope related to the subset of LS(n) having Θ in their autotopism group. Specifically, we prove that this polyhedral structure is generated by a polytope in R((nα−l1α)⋅n2+l1α⋅nβ⋅n)(l1α⋅l1β⋅(n−l1γ)+l1α⋅l1γ⋅(nβ−l1β)+l1β⋅l1γ⋅(nα−l1α)), where nα and nβ are the number of cycles of α and β, respectively, and l1δ is the number of fixed points of δ, for all δ∈{α,β,γ}. Moreover, we study the dimension of these two polytopes for Latin squares of order up to 9. |
Citation | Falcón Ganfornina, R.M. (2008). 0/1-Polytopes related to Latin squares autotopisms. En VI Jornadas de matemática discreta y algorítmica, Lérida. |
Files | Size | Format | View | Description |
---|---|---|---|---|
polytope.pdf | 7.929Mb | [PDF] | View/ | |