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Abstract

The set LS(n) of Latin squares of order n can be represented in R”” as a (n — 1)3-
dimensional 0/1-polytope. Given an autotopism © = («, 8,7) € 2,, we study in this
paper the 0/1-polytope related to the subset of LS(n) having © in their autotopism
group. Specifically, we prove that this polyhedral structure is generated by a polytope

in R((a—1a)n* 15 n5m) (g 15 (n=1)+15 1, -(ns—15)+15-13-(na—10))  where n,, and ng are the
number of cycles of a and S, respectively, and 1} is the number of fixed points of §, for
all 6 € {a,8,v}. Moreover, we study the dimension of these two polytopes for Latin

squares of order up to 9.

Key words: 0/1-polytope, Latin Square, Autotopism group.

1 Introduction

A 0/1-polytope [9] in R? is the convex hull P of a finite set of points with 0/1-coordinates.
Equivalently, it is a polytope with all its vertices in the vertex set of the unit cube Cy =
[0,1]¢. Thus, if we consider these vertices as the column vectors of a matrix V' € {0, 1}%*", it
is verified that P = P(V) = conv(V) = {V-(z1, 22, ..., xp)t | 7; > 0,Vi € [n] and D icin] Ti =
1}, where [n] will denote from now on the set {1,2,...,n}. The dimension of P is the max-
imum number of affinely independent points in P minus 1. Permuting coordinates and
switching (replacing x; by 1 — x;) coordinates transform 0/1-polytopes into 0/1-polytopes.
Two 0/1-polytopes are said to be 0/1-equivalent if there exists a sequence of the two previ-
ous operations transforming one of them into the other one. In combinatorial optimization
there are several examples of 0/1-polytopes like the salesman polytope [8], the cut polytope
[2] or the Latin square polytope [3]. In this paper, we are interested in the last one, which
appears in the 3-dimensional planar assignment problem (3PAP,):

Zie] Tijk = 1,Vj e J ke K. (11)
il jelkek ZkEK Tijk = 1,Viel, jeJ (13)

zip € {01}, Viel,jeJke K.  (14)
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where w;;;, are real weights and I, J, K are three disjoint n-sets.

Euler et al. [3] observed that there exists a 1-1 correspondence between the set LS(n) of
Latin squares of order n and the set F'S(n) of feasible solutions of the 3PAP,. Specifically,
a Latin square L of order n is an n X n array with elements chosen from a set of n distinct
symbols such that each symbol occurs precisely once in each row and each column. From
now on, we will assume [n] as this set of symbols. Given L = (I; ;) € LS(n), the orthogonal
array representation of L is the set of n? triples {(i,4,l;;) | 4,7 € [n]}. So, by taking
I = J = K = [n] and by considering the lexicographical order in I x J x K, it can be defined
the 1-1 correspondence ® : LS(n) — FS(n) C R such that, given L = (li,;) € LS(n),
1, ifl; ; =k,

. . Moreover,
0, otherwise.

1t 1s @(L) = ($111,$112, ey Tlnmy, L2115 ...,.Z‘mm), where Tijk =

if A is the constraint matrix of the system of equations (1), it is defined the Latin square
polytope, Prs(ny = conv{FS(n)} = conv{x € {0, 1}"° | A-x = e}, where e = (1, ..., 1) with
3 - n? entries. Thus, every point of Prg N C,s is a Latin square of order n and vice versa.
By obtaining the minimal equation system for Prg, Euler et al. proved that this polytope
is (n — 1)3-dimensional and they gave some general results about its facial structure.

In this paper, we are interested in obtaining a similar construction than the above one, in
the case of adding some extra conditions to the 3PAP,,. Specifically, we want to study those
0/1-polytopes related to Latin squares having some symmetrical restrictions. To expose the
problem, some previous considerations are needed: The permutation group on [n] is denoted
by S,. Every permutation § € S,, can be uniquely written as a composition of pairwise
disjoint cycles, § = Cfngo...oC‘s

%, where for all i € [ng], one has CJ = (C?J c?}z ci )\5)7
with C?,l = minj{cij}. The cycle structure of § is the sequence 15 = (l‘f,lg, ...,lfl), where
12 is the number of cycles of length 4 in 4, for all i € [n]. Thus, 1§ is the cardinal of the
set of fized points of §, Fix(0) = {i € [n] | d(i) = i}. An isotopism of a Latin square
L = (l;j) € LS(n) is a triple © = (o, 5,7) € Z, = S, X S, x Sp,. In this way, a, and
~ are permutations of rows, columns and symbols of L, respectively. The resulting square
LO = {(a(i),8(),v (li;)) | i,j € [n]} is also a Latin square. The cycle structure of © is
the triple (14,13,1,).

An isotopism which maps L to itself is an autotopism. The stabilizer subgroup of L
in 7, is its autotopism group, A(L) = {© € I, | L® = L}. The set of all autotopisms
of Latin squares of order n is denoted by 2,,. Given © € 2, the set of all Latin squares
L such that © € (L) is denoted by LS(©) and the cardinality of LS(0) is denoted by
A(O). Specifically, if ©; and O4 are two autotopisms with the same cycle structure, then
A(O1) = A(O3). The possible cycle structures of the set of non-trivial autotopisms of Latin
squares of order up to 11 were obtained in [4].

Grobner bases were used in [5] to describe an algorithm that allows one to obtain the
number A(O) in a computational way. This algorithm was implemented in SINGULAR [7] to
get the number of Latin squares of order up to 7 related to any autotopism of a given cycle
structure. Specifically, the authors followed the ideas implemented by Bayer [1] to solve
the problem of an n-colouring a graph, since every Latin square of order n is equivalent
to an n-coloured bipartite graph K, ,. More recently, Falcén and Martin-Morales [6] have
studied the case n > 7 by implementing in a new algorithm the 1-1 correspondence between
the 3PAP, and the set LS(n). As an immediate consequence, the set of vertices of Cs
related to LS(©) can be obtained.

In Section 2, given © € 2,, we study the set of constraints which can be added to



the 3PAP, to get a set of feasible solutions equivalent to the set LS(©). In Section 3, we
define the 0/1-polytope in R related to LS (©). Moreover, we prove the existence of a
0/1-subpolytope of the previous one which can generate it. We see that these two polytopes
do not depend on the autotopism © but on the cycle structure of the autotopism. Finally,
we study the dimensions of these polytopes and we give a classification for polytopes related
to autotopisms of Latin squares of order up to 9.

2 Constraints related to a Latin square autotopism

Given a autotopism © = («,,7) € ,, let (1)o be the set of constraints obtained by
adding to (1) the n3 constraints:

Tijk = xa(i)ﬂ(j)'y(k:):Vi el,jelJ keK. (1.5)@
The following results hold:

Theorem 2.1 There exists a 1-1 correspondence between LS(©) and the set FS(©) of
feasible solutions related to a combinatorial optimization problem having (1)e as the set of
constraints.

Proof. Tt is enough to consider the restriction to LS(O) of the correspondence ® between
LS(n) and F'S(n), because then, given L = (l;;) € LS(n), it is verified that L € LS(O)
if and only if, for all 4,5,k € [n]: l;i; = k & lau),8;) = (k). But this last condition
is equivalent to say that z;; = 1 if and only if z4(;)8(j)yk) = 1. That is to say, zyx =

La(i)B(i)v(k)- g

Corollary 2.2 Ewvery feasible solution of F'S(©) verifies that x;;, = 0, for all i,j,k € [n]
such that one of the following assertions is verified:

a) i € Fiz(a),j € Fix(B) and k & Fiz(y).
b) i € Fix(a),k € Fix(y) and j € Fiz(5).
c) j € Fix(B),k € Fix(y) and i ¢ Fix(a).

Proof. From the conjugacy of rows, columns and symbols in Latin squares, it is enough to
consider assertion (a). So, let us consider a feasible solution of F'S(0) such that x;;, = 1,
for some 4,7,k € [n] verifying assertion (a). From Theorem 2.1, there exists an unique
L = (l;;) € LS(©) being equivalent with such a feasible solution. Specifically, it must be
lij = k and therefore, k = I; ; = lo;) s(;) = V(li,;) = 7(k), which is a contradiction, because
k & Fix(7y). O

Let Sgiz(e) be the set of triples (i, j, k) € [n]? such that one of the assertions of Corollary
2.2 is verified. Since the 1} - 1}3 - (n— l}/) +11 - l% - (n — l}j) + 1[13 . l% - (n —11) variables z;jy,
related to Spi,(e) are all nulls, we can reduce the number of variables of the system (De

in order to obtain a 1 — 1 correspondence between F'S(0) and LS(©). Given s,t € [n], the
following sets will be useful:

51(:1;;(2)) = {Z € [n] | <i787t) € SF’ilE(@)}7 81(;‘217:&2) = {] € [n] | (57j7 t) € SF’ilE(@)}?



5@ = {k e ln]| (5,t,k) € Spire)}-

Moreover, the symmetrical structure given by the autotopism © can also be used to
reduce the number of variables of (1)g. To see it, let us consider:

P | n), ifi & Fiz(a),
%6 = {(Z’]) i€ Sayj € {Sﬁ, if i € Fiz(a). }

as a set of (ny —13) -+ 1}, - ng multi-indices, where S, = {¢f"; | i € [ng]} and Sp = {cf:1 ]
J € [ng]}. The following result is verified:

Proposition 2.3 Let L = (I;;) € LS(©) be such that all the triples of the Latin subrect-
angle Ry, = {(i,7,1; ) | (i,j) € Se} of L are known. Then, all the triples of L are known.
Indeed, given i,j € [n], there exists an unique element (ig,jo) € Se such that l; j can be
obtained starting from lig je -

Proof. Let (i,j,1;;) € L be such that i > n, and let » € [n,] and u € [A?] be such
that cr u = i. Then, (! *(i), 8 7"(j)) € Se, and, therefore, ly1-u(;) gi-u(j) is known. Thus,
li,] (l L-u(g), Bl-u(; ))

Now, let (i,7,1;;) € L be such that i € Fiz(«) and j > ng. Let s € [ng] and v € A7)
be such that cf » = j. From the hypothesis, the triple (3, e

s,1»
li]—'yv 1(l B )
The ﬁnal assortlon is therefore an immediate consequence of the election of the cyclic
decomposition of ©. Specifically, it is verified that (ig,jo) = (™ (i), 5™ (jf)), where
mi,; =min{t > 0] (a'(i), B°(j)) € Se}. O

l. 5 ) is known. Thus,
4,Cq 1

Given i, j,k € [n], let us define kg = ™ (k), where m € [n] is such that (ig,jo) =
(@™(7),8™(5)) € Se. Thus, from the cyclic decomposition of ©, let us observe that
(io, jo, ko) = (a(i)e, B (j)o,v (k)e), for all i,j € [n] and for all ¢ € [n]. The follow-
ing result holds:

Theorem 2.4 There exists a 1-1 correspondence between FS(O) and the set of feasible
solutions F.S'(©) of the following system of equations in do = ((ny —1.) -n*+1% -ng-n) —
(I -15-(n=1) +13 - 11 - (ng —13) + 15 - 11 - (ny — 13)) variables:

Zze[n]\s(ljk) Tigjoke = 1, V], k € [n]. (2.1)e
Zje[n]\S(Q,z,k)) mZ@J@k@ == 1,VZ, k c [ } ( 2)@ (2)9
Zke[n}\S(B LJ)) Ligjoke — 1 Vi j € [ ] (2 3)@
xl]k € {07 1}7V(17]7k> € S@ X [ ] \SFZLI‘(@) (2 4)()

Rie — FS(O) C R”s, such that
0, if (u,v,w) € Spiz(o),

Proof. Let us define the map Vg : FS'(O)

=N

Vo ((Tijk) (i..k)eSo x 1\ Sriae)) = (Xuvw)(uww)emp = Thus, ¥g

Tugvows, Otherwise.
is a 1-1 correspondence between FS'(0) and FS(O). Specifically, from Corollary 2.2
and Proposition 2.3, equations (1.1),(1.2) and (1.3) and conditions (1.4) in FS(©) are

—~



equivalent to (2.1)g, (2.2)e,(2.3)e and (2.4) in FS’(O), respectively. Now, let us consider

(i) i k) So x [\ Spiaie) € F'S'(O) and (Xuww)wva)emp = Yo ((Zijk) (.j.k)eS0 x [n\Spiae))-
0= X, if Ski

Given u,v,w € [n], it is verified that Xy, = o)), If (4, 0,0) € .F”(@)’
Tuguowe = Xa(u)d(v)y(w): Otherwise.

Therefore equations (1.5)g are also verified. O

In general, many of the expressions of (2)g are the same equation and so, they are
redundant. An immediate consequence of Theorem 2.4 is the following;:

Corollary 2.5 Ug' is a 1-1 correspondence between LS(©) and FS'(©). O

© (I)\LS(e)

3 0/1l-polytopes related to a Latin square autotopism

Given a autotopism O € 2, let Ag and Ay be the constraint matrices of (1)g and (2)e,
respectively. Let us define the following 0/1-polytopes:

Prse) = conv{FS(0)} = conv{x € {0, 1}"3 | Ao - x=e@} C R”g,

PlLs(e) = conv{FS'(©)} = conv{x € {0, 1}”3 | Ap - x = ey} C R,

where eg = (1,...,1)" and e = (1,...,1)" have 3-n? + n® and 3 - n? entries, respectively.
The following results hold:

Corollary 3.1 Both 0/1-polytopes, Prse) and P’LS(@), have A(©) vertices.

Proof. It is enough to consider the 1-1 correspondences of Theorem 2.1 and Corollary
2.5. O

Theorem 3.2 dim(Prge)) = dim(P) gq)) < do — rank(Ag).

Proof. The inequality is an immediate consequence of the definition of PZS(@)' Besides,
from the definition of g given in the proof of Theorem 2.4, it is immediate to see that a
set of m affinely vertices of P} S(0) induces a set of m affinely vertices of Prg(e), because
we can identify all the coordinates of the first ones in the second ones. So, dim(P} S(@)) <
dlm(PLs(@))

Now, let {V1,..., Vin} be a set of m affinely independent vertices of Pp @), where V; =
(Vi s Vip3), for all @ € [m]. From Theorem 2.4, V/ = ¥g'(V;) = (V150 Vf gg) 18 &
vertex of P’LS(@), for all i« € [m]. Let us suppose that there exist Ai,..., A, € R, such
that > A; = 1 and >.7", \; - V/ = 0. From the definition of g, given j € [r%] non
corresponding to a triple of S, (@), there exists k € [dg], such that v; j = v;,k, for alli € [m].
Thus, Y%, Ai - V; = 0, which is a contradiction. Therefore, dim(Prge)) < dim(’P'LS((_))). |

Theorem 3.3 Let (1,.13,1y) be the cycle structure of a Latin square autotopism and let us
consider ©1 = (a1,51,m),02 = (a2, B2,72) € An(la,1s,1,). Then, Prse,) and Prse,)
are 0/1-equivalents. Analogously, P/LS(GL) and P’LS(@2) are 0/1-equivalents.



Proof. Let us prove the first assertion, the other case follows analogously. So, since ©4
and ©9 have the same cycle structure, we can consider the isotopism O = (o1, 09,03) € Z,,,
where:

i) al(cff}) = cﬁj, for all i € [kq,] and j € [A],

i) oa(c)t) = 3, for all i € [kg,] and j € [\]'],
i) o3(c)}) = ¢/, for all i € [k, ] and j € [\]'].

Let L € LS(©1) and (w4x); j,keln) = ®(L). From [5], we know that L € LS(©y) if and
only if L® € LS(03). Thus, if (Xijk)ijkem) = ®(LP), then it must be z;j; = Toy (D)o (j)os (k)
for all 4,7,k € [n]. So, the permutation of coordinates m(Zijk) = Zg, (i)os(j)os(k) 15 @ 1-1
correspondence between F'S(©1) and F'S(03), which are the set of vertices of Prg(g,) and
Prs(e,), respectively. Thus,  transforms Ppge,) into Prg(e,)- ad

From Theorem 3.3, the dimension of Prse) and 73}15(9) only depends on the cycle
structure of ©. Moreover, since rows, columns and symbols have an interchangeable role in
Latin squares and since affine independence does not depend on these interchanges, we can
suppose that the cycles «, 8 and 7 of © verify that n, < ng < n,. Thus, let us finish this
paper by following the classification of all possible cycle structures given in [4], in order to
show in Tables 1 and 2 the dimensions of all possible polytopes related to any autotopisms
of order up to 9. Specifically, the exact dimension is shown when the set LS(©) is known.
As an upper bound we show the difference between dg and rank(Ay), which indeed can

not be reached, as we can observe in Table 1. As a lower bound, we study the subsets of
LS(©) given in [6].
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[~ 1o Ig 1, do | A(©) [ Lower bound [6] | dim(P]ggy) | do - rank(Ag) |
2] 0,1) 0,1) 0,1) 1| 2 [ B 1 T |
3 (0,0,1) (0,0,1) (0,0,1) 9 3 - 2 2
(3,0,0) G = 1 1
(1,1,0) (1,1,0) (1,1,0) 11 1 = 3 3
4 (0,2,0,0) 3 - 5 7
(0,0,0,1) (0,0,0,1) (2,1,0,0) 16 8 = 5 8
(4,0,0,0) 24 = 0 9
(0,2,0,0) 32 - 12 13
(0,2,0,0) (0,2,0,0) (2,1,0,0) 32 32 - 13 14
(4,0,0,0) 96 = 15 15
(1,0,1,0) (1,0,1,0) (1,0,1,0) 19 9 = 8 B
(2,1,0,0) (2,1,0,0) (2,1,0,0) 27 16 B 1 7
5 (0,0,0,0,1) (0,0,0,0,1) (0,0,0,0,1) 25 15 B 12 12
(5,0,0,0,0) 120 = 16 16
(1,0,0,1,0) (1,0,0,1,0) (1,0,0,1,0) 29 32 - 5 15
(1,2,0,0,0) (1,2,0,0,0) (1,2,0,0,0) 57 256 E 27 28
(2,0,1,0,0) (2,0,1,0,0) (2,0,1,0,0) 35 144 - 15 15
6 (0,0,2,0,0,0) 72 - 19 21
(1,1,1,0,0,0) 72 - 20 22
(0,0,0,0,0,1) (0,0,0,0,0,1) (2,2,0,0,0,0) 36 144 - 22 23
(3,0,1,0,0,0) 144 - 21 23
(4,1,0,0,0,0) 288 - 24 27
(6,0,0,0,0,0) 720 - 25 25
(0,0,0,0,0,1) (0,0,2,0,0,0) (0,3,0,0,0,0) 36 288 - 23 23
(0,0,2,0,0,0) 648 B a1 a1
(0,0,2,0,0,0) (0,0,2,0,0,0) (3,0,1,0,0,0) 72 2592 B 43 43
(6,0,0,0,0,0) 25920 34 E 15
(1,0,0,0,1,0) (1,0,0,0,1,0) (1,0,0,0,1,0) 11 75 B 24 24
(2,2,0,0,0,0) 36864 37 - 63
(0,3,0,0,0,0) (0,3,0,0,0,0) (4,1,0,0,0,0) 108 110592 38 - 64
(6,0,0,0,0,0) 460800 27 E 65
(2,0,0,1,0,0) (2,0,0,1,0,0) (2,0,0,1,0,0) 13 768 B 25 25
(2,2,0,0,0,0) (2,2,0,0,0,0) (2,2,0,0,0,0) 88 20480 20 - 17
(3,0,1,0,0,0) (3,0,1,0,0,0) (3,0,1,0,0,0) 63 2592 - 20 28
7 ] (0,0,0,0,0,0,1) | (0,0,0,0,0,0,1) | (0,0,0,0,0,0,1) 49 133 - 30 30
(7,0,0,0,0,0,0) 5040 31 = 36
(1,0,0,0,0,1,0) | (1,0,0,0,0,1,0) | (1,0,0,0,0,1,0) 55 288 = 35 35
(1,0,2,0,0,0,0) | (1,0,2,0,0,0,0) | (1,0,2,0,0,0,0) | 109 12768 25 - 68
(1,1,0,1,0,0,0) | (1,1,0,1,0,0,0) | (1,1,0,1,0,0,0) | 109 512 = 24 52
(2,0,0,0,1,0,0) | (2,0,0,0,1,0,0) | (2,0,0,0,1,0,0) 63 2000 20 = 37
(1,3,0,0,0,0,0) | (1,3,0,0,0,0,0) | (1,3,0,0,0,0,0) | 163 | 6045696 30 = 101
(3,0,0,1,0,0,0) | (3,0,0,1,0,0,0) | (3,0,0,1,0,0,0) 79 11472 27 - a1
(3,2,0,0,0,0,0) | (3,2,0,0,0,0,0) | (3,2,0,0,0,0,0) | 131 | 1327104 20 - 66
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n lo =1g Ly dg A(©) Lower bound [6] dirn(’PLS(@)) dg - rank(Ag)
g 70,0,0,2,0,0,0,0) 1152 B 13 e
(0,2,0,1,0,0,0,0) 1408 - 7 7
(0,4,0,0,0,0,0,0) 3356 33 - a5
(2.1,0,1,0,0,0,0) 1408 = 7 a5
(0,0,0,0,0,0,0,1) (2.3,0,0,0,0,0,0) 64 3456 5 . 16
(,0,0,1,0,0,0,0) 3356 35 . 16
(1,2.0,0,0,0.0,0) 8064 3" = I7
(6,1,0,0,0,0.0,0) T7280 39 . I8
(8.0.,0,0.0,0.0,0) 20320 I . 19
(0,0,0, 2 ,0,0,0,0) 106496 38 - 85
(0,2,0,1,0,0,0,0) 188416 43 - 86
(0,4,0,0,0,0,0,0) 811008 36 - 87
(2,1,0,1,0,0,0,0) 353052 37 . ]7
(0,0,0,2,0,0,0,0) (2,3.0,0,0,0.0,0) ] 128 1007616 38 . 88
(,0,0,1,0,0,0,0) 712704 a1 . ES
(4,2,0,0,0,0,0,0) 3737936 35 . )
(6,1,0,0,0,0,0,0) 7741440 36 - 90
(8,0.0,0,0,0.0,0) 33224320 a1 . o1
(0,1,0,0,0,1,0,0) {2.0.0.0.0.1.0.0) | 128 3156 37 . 58
12.0.2.0.0.0.0.0) T9008 32 . 59
(1,0,0,0,0,0,1,0) (1,0,0,0,0,0,1,0) 71 931 - I8 a8
(0.2,0.1,0,0.0,0) 16387 7 . 12
(0,2,0,1,0,0,0,0) (2.1,0,1,0,0.0,0) | 192 16384 18 - 113
(1.0.0.1.0,0.0,0) TA7456 9 5 114
(2,0,0,0,0,1,0,0) 12.0.0.0.0.1.0.0) 0 T0584 35 . 5T
(0,4,0,0,0,0,0,0) - . 71
(2.,3,0,0,0,0,0,0) = - = 172
(0,4,0,0,0,0,0,0) (,2,0,0,0,0,0,0) | 256 = - = 173
(6,1,0,0,0,0.0,0) . B . 74
(8,0,0,0,0,0,0,0) 828396011520 41 - 175
(2,0,2,0,0,0,0,0) (2.0.2.0.0,0.0,0) | 152 12985920 5 . 96
(2.1,0.1,0.0.0.0) (2.1.0.1.0.0.0.0) | 152 8192 5 - 72
(3.0,0,0,1,0,0,0) (3.0,0,0,1,0.0,0) 97 388800 9 - 56
(2,3,0,0,0,0,0,0) (2,3,0,0,0,0,0,0) | 224 - - . 4T
(4,0,0,1,0,0,0,0) (,0,0,1,0,0,0,0) 128 7062624 o1 = 69
(4.2.0.0.0.0.0.0) {1.2.0.0.0.0.0.0) | 192 509607936 15 . 100
9 {0,0,0,0,0,0,0,0,1) 2025 ~ 56 56
(0.0,3.0,0.0.0,0,0) 7128 3 . 58
(0,0,0,0,0,0,0,0,1) [ (3.0.2.0,0.0,0,0,0) ] 81 12960 I5 . 50
(6,0,1,0,0,0,0,0,0) 71280 ryg 5 52
(9,0,0,0,0,0,0,0,0) 362880 9 . 64
(0,0,1,0,0,1,0,0,0) 15552 30 . 36
(0.3,1,0,0.0.0,0,0) 124416 32 . 33
(0,0,1,0,0,1,0,0,0) [(3.0.0.0.0.0.1.0.0) ] 162 62208 33 = T8
(3.3.0.0.0.0.0.0.0) T244160 o . 90
{1,0,0,0,0,0,0,1,0) | (1,0,0,0,0,0,0,1,0) | 89 7096 30 = 53
(0,0,3,0,0,0,0,0,0) - - 170
(0,0,3,0,0,0,0,0,0) [(3,0,2,0,0,0,0,0,0) | 243 . B . 72
(6,0,1,0,0,0,0,0,0) . - . 172
(9,0,0,0,0,0,0,0,0) 548109630680 0 . 176
71,0,0,2,0,0,0,0,0) | (L.0.0.2.0.0.0.0.0) | T77 12189696 7 . 24
{T.1.0.0.0.1.0.0.0) | (1.1.0.0.0.1.0.0.0) | T77 69120 6 . 37
(2.0.0.0,0.0.1,0.0) | (2.0.0.0.0.0.1,0.0) | 99 I38256 32 . &7
(3.0,0,0,0.1,0,0,0) | (3.0.0.0,0,1,0,0,0) | 117 3110400 3 5 73
(1,4.0,0,0.0.0,0.0) | (1.4,0,0.0,0,0,0,0) | 353 . B . 246
(3.0,2.0,0,0.0,0,0) | (3,0.2.0.0,0,0,0,0) | 207 . . . 30
(4,0,0,0,1,0,0,0,0) | (4,0,0,0,1,0,0,0,0) | 149 199065600 8 = q7
(3,3.0,0,0,0,0,0,0) | (3,3,0,0,0,0,0,0,0) | 297 ~ s 87

Table 2: Number of vertices and dimensions of polytopes related to 20g and 2Ag.




