0/1-Polytopes related to Latin squares autotopisms.*

R. M. Falcón
Department of Applied Mathematic I.
Technical Architecture School. University of Seville.
Avda. Reina Mercedes, 4A - 41012, Seville (Spain).
rafalgan@us.es

May 6, 2011

Abstract

The set LS(n) of Latin squares of order n can be represented in \mathbb{R}^{n^3} as a $(n-1)^3$ -dimensional 0/1-polytope. Given an autotopism $\Theta = (\alpha, \beta, \gamma) \in \mathfrak{A}_n$, we study in this paper the 0/1-polytope related to the subset of LS(n) having Θ in their autotopism group. Specifically, we prove that this polyhedral structure is generated by a polytope in $\mathbb{R}^{((\mathbf{n}_{\alpha}-\mathbf{l}_{\alpha}^1)\cdot n^2+\mathbf{l}_{\alpha}^1\cdot \mathbf{n}_{\beta}\cdot n)-(\mathbf{l}_{\alpha}^1\cdot \mathbf{l}_{\beta}^1\cdot (\mathbf{n}-\mathbf{l}_{\gamma}^1)+\mathbf{l}_{\alpha}^1\cdot \mathbf{l}_{\gamma}^1\cdot (\mathbf{n}_{\beta}-\mathbf{l}_{\beta}^1)+\mathbf{l}_{\beta}^1\cdot \mathbf{l}_{\gamma}^1\cdot (\mathbf{n}_{\alpha}-\mathbf{l}_{\alpha}^1))}$, where \mathbf{n}_{α} and \mathbf{n}_{β} are the number of cycles of α and β , respectively, and \mathbf{l}_{δ}^1 is the number of fixed points of δ , for all $\delta \in \{\alpha, \beta, \gamma\}$. Moreover, we study the dimension of these two polytopes for Latin squares of order up to 9.

Key words: 0/1-polytope, Latin Square, Autotopism group.

1 Introduction

A 0/1-polytope [9] in \mathbb{R}^d is the convex hull \mathcal{P} of a finite set of points with 0/1-coordinates. Equivalently, it is a polytope with all its vertices in the vertex set of the unit cube $C_d = [0,1]^d$. Thus, if we consider these vertices as the column vectors of a matrix $V \in \{0,1\}^{d \times n}$, it is verified that $\mathcal{P} = \mathcal{P}(V) = conv(V) = \{V \cdot (x_1, x_2, ..., x_n)^t \mid x_i \geq 0, \forall i \in [n] \text{ and } \sum_{i \in [n]} x_i = 1\}$, where [n] will denote from now on the set $\{1,2,...,n\}$. The dimension of \mathcal{P} is the maximum number of affinely independent points in \mathcal{P} minus 1. Permuting coordinates and switching (replacing x_i by $1-x_i$) coordinates transform 0/1-polytopes into 0/1-polytopes. Two 0/1-polytopes are said to be 0/1-equivalent if there exists a sequence of the two previous operations transforming one of them into the other one. In combinatorial optimization there are several examples of 0/1-polytopes like the salesman polytope [8], the cut polytope [2] or the Latin square polytope [3]. In this paper, we are interested in the last one, which appears in the 3-dimensional planar assignment problem $(3PAP_n)$:

$$\min \sum_{i \in I, j \in J, k \in K} w_{ijk} \cdot x_{ijk}, \ s.t. \begin{cases}
\sum_{i \in I} x_{ijk} = 1, \forall j \in J, k \in K. \\
\sum_{j \in J} x_{ijk} = 1, \forall i \in I, k \in K.
\end{cases} (1.1)$$

$$\sum_{k \in K} x_{ijk} = 1, \forall i \in I, j \in J. \\
x_{ijk} \in \{0, 1\}, \forall i \in I, j \in J, k \in K.
\end{cases} (1.2)$$

$$(1)$$

4

^{*}Official printed version available in Proceedings of VI Jornadas de Matemática Discreta y Algorítmica (2008), pp. 311-319. ISBN: 978-84-8409-263-6.

where w_{ijk} are real weights and I, J, K are three disjoint n-sets.

Euler et al. [3] observed that there exists a 1-1 correspondence between the set LS(n) of Latin squares of order n and the set FS(n) of feasible solutions of the $3PAP_n$. Specifically, a Latin square L of order n is an $n \times n$ array with elements chosen from a set of n distinct symbols such that each symbol occurs precisely once in each row and each column. From now on, we will assume [n] as this set of symbols. Given $L = (l_{i,j}) \in LS(n)$, the orthogonal array representation of L is the set of n^2 triples $\{(i, j, l_{i,j}) \mid i, j \in [n]\}$. So, by taking I = J = K = [n] and by considering the lexicographical order in $I \times J \times K$, it can be defined the 1-1 correspondence $\Phi: LS(n) \to FS(n) \subseteq \mathbb{R}^{n^3}$, such that, given $L = (l_{i,j}) \in LS(n)$,

it is
$$\Phi(L) = (x_{111}, x_{112}, ..., x_{1nn}, x_{211}, ..., x_{nnn})$$
, where $x_{ijk} = \begin{cases} 1, & \text{if } l_{i,j} = k, \\ 0, & \text{otherwise.} \end{cases}$. Moreover,

if A is the constraint matrix of the system of equations (1), it is defined the Latin square polytope, $\mathcal{P}_{LS(n)} = conv\{FS(n)\} = conv\{\mathbf{x} \in \{0,1\}^{n^3} \mid A \cdot \mathbf{x} = \mathbf{e}\}$, where $\mathbf{e} = (1,...,1)^t$ with $3 \cdot n^2$ entries. Thus, every point of $\mathcal{P}_{LS} \cap C_{n^3}$ is a Latin square of order n and vice versa. By obtaining the minimal equation system for P_{LS} , Euler et al. proved that this polytope is $(n-1)^3$ -dimensional and they gave some general results about its facial structure.

In this paper, we are interested in obtaining a similar construction than the above one, in the case of adding some extra conditions to the $3PAP_n$. Specifically, we want to study those 0/1-polytopes related to Latin squares having some symmetrical restrictions. To expose the problem, some previous considerations are needed: The permutation group on [n] is denoted by S_n . Every permutation $\delta \in S_n$ can be uniquely written as a composition of pairwise disjoint cycles, $\delta = C_1^{\delta} \circ C_2^{\delta} \circ ... \circ C_{\mathbf{n}_{\delta}}^{\delta}$, where for all $i \in [\mathbf{n}_{\delta}]$, one has $C_i^{\delta} = \begin{pmatrix} c_{i,1}^{\delta} & c_{i,2}^{\delta} & ... & c_{i,\lambda_{\delta}}^{\delta} \end{pmatrix}$, with $c_{i,1}^{\delta} = \min_j \{c_{i,j}^{\delta}\}$. The cycle structure of δ is the sequence $\mathbf{l}_{\delta} = (\mathbf{l}_1^{\delta}, \mathbf{l}_2^{\delta}, ..., \mathbf{l}_n^{\delta})$, where \mathbf{l}_i^{δ} is the number of cycles of length i in δ , for all $i \in [n]$. Thus, \mathbf{l}_1^{δ} is the cardinal of the set of fixed points of δ , $Fix(\delta) = \{i \in [n] \mid \delta(i) = i\}$. An isotopism of a Latin square $L = (l_{i,j}) \in LS(n)$ is a triple $\Theta = (\alpha, \beta, \gamma) \in \mathcal{I}_n = S_n \times S_n \times S_n$. In this way, α, β and γ are permutations of rows, columns and symbols of L, respectively. The resulting square $L^{\Theta} = \{(\alpha(i), \beta(j), \gamma(l_{i,j})) \mid i, j \in [n]\}$ is also a Latin square. The cycle structure of Θ is the triple $(\mathbf{l}_{\alpha}, \mathbf{l}_{\beta}, \mathbf{l}_{\gamma})$.

An isotopism which maps L to itself is an autotopism. The stabilizer subgroup of L in \mathcal{I}_n is its autotopism group, $\mathfrak{A}(L) = \{\Theta \in \mathcal{I}_n \mid L^{\Theta} = L\}$. The set of all autotopisms of Latin squares of order n is denoted by \mathfrak{A}_n . Given $\Theta \in \mathfrak{A}_n$, the set of all Latin squares L such that $\Theta \in \mathfrak{A}(L)$ is denoted by $LS(\Theta)$ and the cardinality of $LS(\Theta)$ is denoted by $\Delta(\Theta)$. Specifically, if Θ_1 and Θ_2 are two autotopisms with the same cycle structure, then $\Delta(\Theta_1) = \Delta(\Theta_2)$. The possible cycle structures of the set of non-trivial autotopisms of Latin squares of order up to 11 were obtained in [4].

Gröbner bases were used in [5] to describe an algorithm that allows one to obtain the number $\Delta(\Theta)$ in a computational way. This algorithm was implemented in Singular [7] to get the number of Latin squares of order up to 7 related to any autotopism of a given cycle structure. Specifically, the authors followed the ideas implemented by Bayer [1] to solve the problem of an n-colouring a graph, since every Latin square of order n is equivalent to an n-coloured bipartite graph $K_{n,n}$. More recently, Falcón and Martín-Morales [6] have studied the case n > 7 by implementing in a new algorithm the 1-1 correspondence between the $3PAP_n$ and the set LS(n). As an immediate consequence, the set of vertices of C_{n^3} related to $LS(\Theta)$ can be obtained.

In Section 2, given $\Theta \in \mathfrak{A}_n$, we study the set of constraints which can be added to

the $3PAP_n$ to get a set of feasible solutions equivalent to the set $LS(\Theta)$. In Section 3, we define the 0/1-polytope in \mathbb{R}^{n^3} related to $LS(\Theta)$. Moreover, we prove the existence of a 0/1-subpolytope of the previous one which can generate it. We see that these two polytopes do not depend on the autotopism Θ but on the cycle structure of the autotopism. Finally, we study the dimensions of these polytopes and we give a classification for polytopes related to autotopisms of Latin squares of order up to 9.

2 Constraints related to a Latin square autotopism

Given a autotopism $\Theta = (\alpha, \beta, \gamma) \in \mathfrak{A}_n$, let $(1)_{\Theta}$ be the set of constraints obtained by adding to (1) the n^3 constraints:

The following results hold:

Theorem 2.1 There exists a 1-1 correspondence between $LS(\Theta)$ and the set $FS(\Theta)$ of feasible solutions related to a combinatorial optimization problem having $(1)_{\Theta}$ as the set of constraints.

Proof. It is enough to consider the restriction to $LS(\Theta)$ of the correspondence Φ between LS(n) and FS(n), because then, given $L=(l_{i,j})\in LS(n)$, it is verified that $L\in LS(\Theta)$ if and only if, for all $i,j,k\in[n]$: $l_{i,j}=k\Leftrightarrow l_{\alpha(i),\beta(j)}=\gamma(k)$. But this last condition is equivalent to say that $x_{ijk}=1$ if and only if $x_{\alpha(i)\beta(j)\gamma(k)}=1$. That is to say, $x_{ijk}=x_{\alpha(i)\beta(j)\gamma(k)}$.

Corollary 2.2 Every feasible solution of $FS(\Theta)$ verifies that $x_{ijk} = 0$, for all $i, j, k \in [n]$ such that one of the following assertions is verified:

- a) $i \in Fix(\alpha), j \in Fix(\beta)$ and $k \notin Fix(\gamma)$.
- b) $i \in Fix(\alpha), k \in Fix(\gamma)$ and $j \notin Fix(\beta)$.
- c) $j \in Fix(\beta), k \in Fix(\gamma)$ and $i \notin Fix(\alpha)$.

Proof. From the conjugacy of rows, columns and symbols in Latin squares, it is enough to consider assertion (a). So, let us consider a feasible solution of $FS(\Theta)$ such that $x_{ijk} = 1$, for some $i, j, k \in [n]$ verifying assertion (a). From Theorem 2.1, there exists an unique $L = (l_{i,j}) \in LS(\Theta)$ being equivalent with such a feasible solution. Specifically, it must be $l_{i,j} = k$ and therefore, $k = l_{i,j} = l_{\alpha(i),\beta(j)} = \gamma(l_{i,j}) = \gamma(k)$, which is a contradiction, because $k \notin Fix(\gamma)$.

Let $S_{Fix(\Theta)}$ be the set of triples $(i, j, k) \in [n]^3$ such that one of the assertions of Corollary 2.2 is verified. Since the $\mathbf{l}^1_{\alpha} \cdot \mathbf{l}^1_{\beta} \cdot (n - \mathbf{l}^1_{\gamma}) + \mathbf{l}^1_{\alpha} \cdot \mathbf{l}^1_{\gamma} \cdot (n - \mathbf{l}^1_{\beta}) + \mathbf{l}^1_{\beta} \cdot \mathbf{l}^1_{\gamma} \cdot (n - \mathbf{l}^1_{\alpha})$ variables x_{ijk} related to $S_{Fix(\Theta)}$ are all nulls, we can reduce the number of variables of the system $(1)_{\Theta}$ in order to obtain a 1-1 correspondence between $FS(\Theta)$ and $LS(\Theta)$. Given $s, t \in [n]$, the following sets will be useful:

$$S_{Fix(\Theta)}^{(1,s,t)} = \{i \in [n] \mid (i,s,t) \in S_{Fix(\Theta)}\}, \qquad S_{Fix(\Theta)}^{(2,s,t)} = \{j \in [n] \mid (s,j,t) \in S_{Fix(\Theta)}\},$$

$$S_{Fix(\Theta)}^{(3,s,t)} = \{k \in [n] \mid (s,t,k) \in S_{Fix(\Theta)}\}.$$

Moreover, the symmetrical structure given by the autotopism Θ can also be used to reduce the number of variables of $(1)_{\Theta}$. To see it, let us consider:

$$S_{\Theta} = \left\{ (i,j) \mid i \in S_{\alpha}, j \in \begin{cases} [n], & \text{if } i \notin Fix(\alpha), \\ S_{\beta}, & \text{if } i \in Fix(\alpha). \end{cases} \right\}$$

as a set of $(\mathbf{n}_{\alpha} - \mathbf{l}_{\alpha}^{1}) \cdot n + \mathbf{l}_{\alpha}^{1} \cdot \mathbf{n}_{\beta}$ multi-indices, where $S_{\alpha} = \{c_{i,1}^{\alpha} \mid i \in [\mathbf{n}_{\alpha}]\}$ and $S_{\beta} = \{c_{j,1}^{\beta} \mid j \in [\mathbf{n}_{\beta}]\}$. The following result is verified:

Proposition 2.3 Let $L = (l_{i,j}) \in LS(\Theta)$ be such that all the triples of the Latin subrectangle $R_L = \{(i,j,l_{i,j}) \mid (i,j) \in S_{\Theta}\}$ of L are known. Then, all the triples of L are known. Indeed, given $i,j \in [n]$, there exists an unique element $(i_{\Theta},j_{\Theta}) \in S_{\Theta}$ such that $l_{i,j}$ can be obtained starting from $l_{i_{\Theta},j_{\Theta}}$.

Proof. Let $(i,j,l_{i,j}) \in L$ be such that $i > \mathbf{n}_{\alpha}$ and let $r \in [\mathbf{n}_{\alpha}]$ and $u \in [\lambda_r^{\alpha}]$ be such that $c_{r,u}^{\alpha} = i$. Then, $(\alpha^{1-u}(i), \beta^{1-u}(j)) \in S_{\Theta}$, and, therefore, $l_{\alpha^{1-u}(i),\beta^{1-u}(j)}$ is known. Thus, $l_{i,j} = \gamma^{u-1}(l_{\alpha^{1-u}(i),\beta^{1-u}(j)})$.

Now, let $(i, j, l_{i,j}) \in L$ be such that $i \in Fix(\alpha)$ and $j > \mathbf{n}_{\beta}$. Let $s \in [\mathbf{n}_{\beta}]$ and $v \in [\lambda_s^{\beta}]$ be such that $c_{s,v}^{\beta} = j$. From the hypothesis, the triple $(i, c_{s,1}^{\beta}, l_{i,c_{s,1}^{\beta}})$ is known. Thus, $l_{i,j} = \gamma^{v-1}(l_{i,c_{s,1}^{\beta}})$.

The final assertion is therefore an immediate consequence of the election of the cyclic decomposition of Θ . Specifically, it is verified that $(i_{\Theta}, j_{\Theta}) = (\alpha^{m_{i,j}}(i), \beta^{m_{i,j}}(j))$, where $m_{i,j} = \min\{t \geq 0 \mid (\alpha^t(i), \beta^t(j)) \in S_{\Theta}\}$.

Given $i, j, k \in [n]$, let us define $k_{\Theta} = \gamma^m(k)$, where $m \in [n]$ is such that $(i_{\Theta}, j_{\Theta}) = (\alpha^m(i), \beta^m(j)) \in S_{\Theta}$. Thus, from the cyclic decomposition of Θ , let us observe that $(i_{\Theta}, j_{\Theta}, k_{\Theta}) = (\alpha^t(i)_{\Theta}, \beta^t(j)_{\Theta}, \gamma^t(k)_{\Theta})$, for all $i, j \in [n]$ and for all $t \in [n]$. The following result holds:

Theorem 2.4 There exists a 1-1 correspondence between $FS(\Theta)$ and the set of feasible solutions $FS'(\Theta)$ of the following system of equations in $d_{\Theta} = ((\mathbf{n}_{\alpha} - \mathbf{l}_{\alpha}^{1}) \cdot n^{2} + \mathbf{l}_{\alpha}^{1} \cdot \mathbf{n}_{\beta} \cdot n) - (\mathbf{l}_{\alpha}^{1} \cdot \mathbf{l}_{\beta}^{1} \cdot (n - \mathbf{l}_{\gamma}^{1}) + \mathbf{l}_{\alpha}^{1} \cdot \mathbf{l}_{\gamma}^{1} \cdot (\mathbf{n}_{\beta} - \mathbf{l}_{\beta}^{1}) + \mathbf{l}_{\beta}^{1} \cdot \mathbf{l}_{\gamma}^{1} \cdot (\mathbf{n}_{\alpha} - \mathbf{l}_{\alpha}^{1}))$ variables:

$$\begin{cases}
\sum_{i \in [n] \setminus S_{Fix(\Theta)}^{(1,j,k)}} x_{i \ominus j \ominus k_{\Theta}} = 1, \forall j, k \in [n]. & (2.1)_{\Theta} \\
\sum_{j \in [n] \setminus S_{Fix(\Theta)}^{(2,i,k)}} x_{i \ominus j \ominus k_{\Theta}} = 1, \forall i, k \in [n]. & (2.2)_{\Theta} \\
\sum_{k \in [n] \setminus S_{Fix(\Theta)}^{(3,i,j)}} x_{i \ominus j \ominus k_{\Theta}} = 1, \forall i, j \in [n]. & (2.3)_{\Theta} \\
x_{ijk} \in \{0,1\}, \forall (i,j,k) \in S_{\Theta} \times [n] \setminus S_{Fix(\Theta)}. & (2.4)_{\Theta}
\end{cases}$$

Proof. Let us define the map $\Psi_{\Theta}: FS'(\Theta) \subseteq \mathbb{R}^{d_{\Theta}} \to FS(\Theta) \subseteq \mathbb{R}^{n^3}$, such that $\Psi_{\Theta}((x_{ijk})_{(i,j,k)\in S_{\Theta}\times[n]\backslash S_{Fix(\Theta)}}) = (X_{uvw})_{(u,v,w)\in[n]^3} = \begin{cases} 0, & \text{if } (u,v,w)\in S_{Fix(\Theta)}, \\ x_{u_{\Theta}v_{\Theta}w_{\Theta}}, & \text{otherwise.} \end{cases}$. Thus, Ψ_{Θ} is a 1-1 correspondence between $FS'(\Theta)$ and $FS(\Theta)$. Specifically, from Corollary 2.2 and Proposition 2.3, equations (1.1), (1.2) and (1.3) and conditions (1.4) in $FS(\Theta)$ are

4

equivalent to $(2.1)_{\Theta}$, $(2.2)_{\Theta}$, $(2.3)_{\Theta}$ and (2.4) in $FS'(\Theta)$, respectively. Now, let us consider $(x_{ijk})_{(i,j,k)\in S_{\Theta}\times[n]\backslash S_{Fix(\Theta)}}\in FS'(\Theta)$ and $(X_{uvw})_{(u,v,w)\in[n]^3}=\Psi_{\Theta}((x_{ijk})_{(i,j,k)\in S_{\Theta}\times[n]\backslash S_{Fix(\Theta)}})$. Given $u,v,w\in[n]$, it is verified that $X_{uvw}=\begin{cases} 0=X_{\alpha(u)\beta(v)\gamma(w)}, & \text{if } (u,v,w)\in S_{Fix(\Theta)},\\ x_{u_{\Theta}v_{\Theta}w_{\Theta}}=X_{\alpha(u)\beta(v)\gamma(w)}, & \text{otherwise.} \end{cases}$. Therefore equations $(1.5)_{\Theta}$ are also verified.

In general, many of the expressions of $(2)_{\Theta}$ are the same equation and so, they are redundant. An immediate consequence of Theorem 2.4 is the following:

Corollary 2.5 $\Psi_{\Theta}^{-1} \circ \Phi_{|_{LS(\Theta)}}$ is a 1-1 correspondence between $LS(\Theta)$ and $FS'(\Theta)$.

3 0/1-polytopes related to a Latin square autotopism

Given a autotopism $\Theta \in \mathfrak{A}_n$, let A_{Θ} and A'_{Θ} be the constraint matrices of $(1)_{\Theta}$ and $(2)_{\Theta}$, respectively. Let us define the following 0/1-polytopes:

$$\mathcal{P}_{LS(\Theta)} = conv\{FS(\Theta)\} = conv\{\mathbf{x} \in \{0,1\}^{n^3} \mid A_{\Theta} \cdot \mathbf{x} = \mathbf{e}_{\Theta}\} \subseteq \mathbb{R}^{n^3},$$

$$\mathcal{P}'_{LS(\Theta)} = conv\{FS'(\Theta)\} = conv\{\mathbf{x} \in \{0,1\}^{n^3} \mid A'_{\Theta} \cdot \mathbf{x} = \mathbf{e}'_{\Theta}\} \subseteq \mathbb{R}^{d_{\Theta}},$$

where $\mathbf{e}_{\Theta} = (1, ..., 1)^t$ and $\mathbf{e}'_{\Theta} = (1, ..., 1)^t$ have $3 \cdot n^2 + n^3$ and $3 \cdot n^2$ entries, respectively. The following results hold:

Corollary 3.1 Both 0/1-polytopes, $\mathcal{P}_{LS(\Theta)}$ and $\mathcal{P}'_{LS(\Theta)}$, have $\Delta(\Theta)$ vertices.

Proof. It is enough to consider the 1-1 correspondences of Theorem 2.1 and Corollary 2.5.

Theorem 3.2 dim
$$(\mathcal{P}_{LS(\Theta)})$$
 = dim $(\mathcal{P}'_{LS(\Theta)}) \le d_{\Theta} - rank(A'_{\Theta})$.

Proof. The inequality is an immediate consequence of the definition of $\mathcal{P}'_{LS(\Theta)}$. Besides, from the definition of Ψ_{Θ} given in the proof of Theorem 2.4, it is immediate to see that a set of m affinely vertices of $\mathcal{P}'_{LS(\Theta)}$ induces a set of m affinely vertices of $\mathcal{P}_{LS(\Theta)}$, because we can identify all the coordinates of the first ones in the second ones. So, $\dim(\mathcal{P}'_{LS(\Theta)}) \leq \dim(\mathcal{P}_{LS(\Theta)})$.

Now, let $\{V_1,...,V_m\}$ be a set of m affinely independent vertices of $\mathcal{P}_{LS(\Theta)}$, where $V_i = (v_{i,1},...,v_{i,n^3})$, for all $i \in [m]$. From Theorem 2.4, $V_i' = \Psi_{\Theta}^{-1}(V_i) = (v_{i,1}',...,v_{i,d_{\Theta}}')$ is a vertex of $\mathcal{P}'_{LS(\Theta)}$, for all $i \in [m]$. Let us suppose that there exist $\lambda_1,...,\lambda_m \in \mathbb{R}$, such that $\sum_{i=1}^m \lambda_i = 1$ and $\sum_{i=1}^m \lambda_i \cdot V_i' = \mathbf{0}$. From the definition of Ψ_{Θ} , given $j \in [n^3]$ non corresponding to a triple of $S_{Fix(\Theta)}$, there exists $k \in [d_{\Theta}]$, such that $v_{i,j} = v_{i,k}'$, for all $i \in [m]$. Thus, $\sum_{i=1}^m \lambda_i \cdot V_i = \mathbf{0}$, which is a contradiction. Therefore, $\dim(\mathcal{P}_{LS(\Theta)}) \leq \dim(\mathcal{P}'_{LS(\Theta)})$. \square

Theorem 3.3 Let $(\mathbf{l}_{\alpha}, \mathbf{l}_{\beta}, \mathbf{l}_{\gamma})$ be the cycle structure of a Latin square autotopism and let us consider $\Theta_1 = (\alpha_1, \beta_1, \gamma_1), \Theta_2 = (\alpha_2, \beta_2, \gamma_2) \in \mathfrak{A}_n(\mathbf{l}_{\alpha}, \mathbf{l}_{\beta}, \mathbf{l}_{\gamma})$. Then, $\mathcal{P}_{LS(\Theta_1)}$ and $\mathcal{P}_{LS(\Theta_2)}$ are 0/1-equivalents. Analogously, $\mathcal{P}'_{LS(\Theta_1)}$ and $\mathcal{P}'_{LS(\Theta_2)}$ are 0/1-equivalents.

٢

Proof. Let us prove the first assertion, the other case follows analogously. So, since Θ_1 and Θ_2 have the same cycle structure, we can consider the isotopism $\Theta = (\sigma_1, \sigma_2, \sigma_3) \in \mathcal{I}_n$, where:

- i) $\sigma_1(c_{i,j}^{\alpha_1}) = c_{i,j}^{\alpha_2}$, for all $i \in [k_{\alpha_1}]$ and $j \in [\lambda_i^{\alpha_1}]$,
- ii) $\sigma_2(c_{i,j}^{\beta_1}) = c_{i,j}^{\beta_2}$, for all $i \in [k_{\beta_1}]$ and $j \in [\lambda_i^{\beta_1}]$,
- iii) $\sigma_3(c_{i,j}^{\gamma_1}) = c_{i,j}^{\gamma_2}$, for all $i \in [k_{\gamma_1}]$ and $j \in [\lambda_i^{\gamma_1}]$.

Let $L \in LS(\Theta_1)$ and $(x_{ijk})_{i,j,k \in [n]} = \Phi(L)$. From [5], we know that $L \in LS(\Theta_1)$ if and only if $L^{\Theta} \in LS(\Theta_2)$. Thus, if $(X_{ijk})_{i,j,k \in [n]} = \Phi(L^{\Theta})$, then it must be $x_{ijk} = x_{\sigma_1(i)\sigma_2(j)\sigma_3(k)}$, for all $i, j, k \in [n]$. So, the permutation of coordinates $\pi(x_{ijk}) = x_{\sigma_1(i)\sigma_2(j)\sigma_3(k)}$ is a 1-1 correspondence between $FS(\Theta_1)$ and $FS(\Theta_2)$, which are the set of vertices of $\mathcal{P}_{LS(\Theta_1)}$ and $\mathcal{P}_{LS(\Theta_2)}$, respectively. Thus, π transforms $\mathcal{P}_{LS(\Theta_1)}$ into $\mathcal{P}_{LS(\Theta_2)}$.

From Theorem 3.3, the dimension of $\mathcal{P}_{LS(\Theta)}$ and $\mathcal{P}'_{LS(\Theta)}$ only depends on the cycle structure of Θ . Moreover, since rows, columns and symbols have an interchangeable role in Latin squares and since affine independence does not depend on these interchanges, we can suppose that the cycles α, β and γ of Θ verify that $\mathbf{n}_{\alpha} \leq \mathbf{n}_{\beta} \leq \mathbf{n}_{\gamma}$. Thus, let us finish this paper by following the classification of all possible cycle structures given in [4], in order to show in Tables 1 and 2 the dimensions of all possible polytopes related to any autotopisms of order up to 9. Specifically, the exact dimension is shown when the set $LS(\Theta)$ is known. As an upper bound we show the difference between d_{Θ} and $rank(A'_{\Theta})$, which indeed can not be reached, as we can observe in Table 1. As a lower bound, we study the subsets of $LS(\Theta)$ given in [6].

References

- [1] D. Bayer. The division algorithm and the Hilbert scheme. Ph. D. Thesis. Harvard University, 1982.
- [2] M.M. Deza and M. Laurent. Geometry of cuts and metrics. *Algorithms and Combinatorics*, 15. *Springer-Verlag*, Berlin Heidelberg, 1988.
- [3] R. Euler, R.E. Burkard and R. Grommes. On Latin squares and the facial structure of related polytopes. *Discrete Mathematics*, 62:155–181, 1986.
- [4] R.M. Falcón. Cycle structures of autotopisms of the Latin squares of order up to 11. *Ars Combinatoria* (in press). Available from http://arxiv.org/abs/0709.2973.
- [5] R.M. Falcón and J. Martín-Morales. Gröbner bases and the number of Latin squares related to autotopisms of order ≤ 7 . *Journal of Symbolic Computation*, 42: 1142–1154, 2007.
- [6] R.M. Falcón and J. Martín-Morales. The 3-dimensional planar assignment problem and the number of Latin squares related to an autotopism. Sent to XI Encuentro de Álgebra Computacional y Aplicaciones (Granada, 2008).

^

2		1_{β}	l_{γ}	d_{Θ}	$\Delta(\Theta)$	Lower bound [6]	$\dim(\mathcal{P}'_{LS(\Theta)})$	d_{Θ} - rank (A'_{Θ})
	(0,1)	(0,1)	(0,1)	4	2	-	1	1
3	(0,0,1)	(0,0,1)	(0,0,1)	9	3	-	2	2
	(0,0,2)	(0,0,2)	(3,0,0)	ľ	6	-	4	4
	(1,1,0)	(1,1,0)	(1,1,0)	11	4	-	3	3
4			(0,2,0,0)		8	-	5	7
	(0,0,0,1)	(0,0,0,1)	(2,1,0,0)	16	8	-	5	8
			(4,0,0,0)	i	24	-	9	9
			(0,2,0,0)		32	-	12	13
	(0,2,0,0)	(0,2,0,0)	(2,1,0,0)	32	32	-	13	14
			(4,0,0,0)		96	-	15	15
	(1,0,1,0)	(1,0,1,0)	(1,0,1,0)	19	9	-	8	8
	(2,1,0,0)	(2,1,0,0)	(2,1,0,0)	24	16	-	4	7
5	(0,0,0,0,1)	(0,0,0,0,1)	(0,0,0,0,1)	25	15	-	12	12
			(5,0,0,0,0)	1	120	-	16	16
	(1,0,0,1,0)	(1,0,0,1,0)	(1,0,0,1,0)	29	32	-	15	15
	(1,2,0,0,0)	(1,2,0,0,0)	(1,2,0,0,0)	57	256	-	27	28
	(2,0,1,0,0)	(2,0,1,0,0)	(2,0,1,0,0)	35	144	-	15	15
6			(0,0,2,0,0,0)		72	-	19	21
			(1,1,1,0,0,0)	1	72	-	20	22
	(0,0,0,0,0,1)	(0,0,0,0,0,1)	(2,2,0,0,0,0)	36	144	-	22	23
			(3,0,1,0,0,0)	1	144	-	21	23
			(4,1,0,0,0,0)		288	-	24	24
			(6,0,0,0,0,0)		720	-	25	25
	(0,0,0,0,0,1)	(0,0,2,0,0,0)	(0,3,0,0,0,0)	36	288	-	23	23
			(0,0,2,0,0,0)		648	-	41	41
	(0,0,2,0,0,0)	(0,0,2,0,0,0)	(3,0,1,0,0,0)	72	2592	-	43	43
L	(1.0.0.1.0)	(1.0.0.1.0)	(6,0,0,0,0,0)		25920	34	-	45
	(1,0,0,0,1,0)	(1,0,0,0,1,0)	(1,0,0,0,1,0)	41	75	-	24	24
	(0,0,0,0,0)	(0,0,0,0,0)	(2,2,0,0,0,0)	100	36864	37	-	63 64
	(0,3,0,0,0,0)	(0,3,0,0,0,0)	(4,1,0,0,0,0)	108	110592 460800	38 27	-	65
-	(2,0,0,1,0,0)	(2,0,0,1,0,0)	(6,0,0,0,0,0) (2,0,0,1,0,0)	48	768	-	- 25	25
	(2,0,0,1,0,0) (2,2,0,0,0,0)	(2,0,0,1,0,0) (2,2,0,0,0,0)	(2,0,0,1,0,0) (2,2,0,0,0,0)	88	20480	20	- 25	44
-	(3,0,1,0,0,0)	(3,0,1,0,0,0)	(3,0,1,0,0,0)	63	2592	-	20	28
7	(0,0,0,0,0,0,1)	(0,0,0,0,0,0,1)	(0.0.0.0.0.0.1)	49	133	-	30	30
' I	(0,0,0,0,0,0,1)	(0,0,0,0,0,0,1)	(7,0,0,0,0,0,0)	43	5040	31	-	36
⊢	(1,0,0,0,0,1,0)	(1,0,0,0,0,1,0)	(1,0,0,0,0,1,0)	55	288	-	35	35
F	(1,0,2,0,0,0,0)	(1,0,2,0,0,0,0)	(1,0,2,0,0,0,0)	109	42768	25	-	68
	(1,1,0,1,0,0,0)	(1,1,0,1,0,0,0)	(1,1,0,1,0,0,0)	109	512	-	24	52
	(2,0,0,0,1,0,0)	(2,0,0,0,1,0,0)	(2,0,0,0,1,0,0)	63	4000	20	-	37
	(1,3,0,0,0,0,0)	(1,3,0,0,0,0,0)	(1,3,0,0,0,0,0)	163	6045696	30	-	101
	(3,0,0,1,0,0,0)	(3,0,0,1,0,0,0)	(3,0,0,1,0,0,0)	79	41472	27	-	41
	(3,2,0,0,0,0,0)	(3,2,0,0,0,0,0)	(3,2,0,0,0,0,0)	131	1327104	20	-	66

Table 1: Number of vertices and dimensions of polytopes related to \mathfrak{A}_n , for $n \leq 7$.

- [7] G.M. Greuel, G. Pfister and H. Schönemann. SINGULAR 3.0. A Computer Algebra System for Polynomial Computations. Centre for Computer Algebra, University of Kaiserlautern, 2005. Available from http://www.singular.uni-kl.de.
- [8] M. Grötschel and M. Padberg. Geometric algorithms and combinatorial optimization. *Algorithms and Combinatorics*, 2. *Springer-Verlag*, Berlin Heidelberg, 1988.
- [9] G.M. Ziegler. Lectures on 0/1-Polytopes. Polytopes: Combinatorics and computations, 1–42. Birkhäuser, 2000.

,

n	$l_{\alpha} = l_{\beta}$	1_{γ}	d_{Θ}	$\Delta(\Theta)$	Lower bound [6]	$\dim(\mathcal{P}'_{LS(\Theta)})$	d_{Θ} - rank (A'_{Θ})
8	·	(0,0,0,2,0,0,0,0)		1152	-	43	43
		(0,2,0,1,0,0,0,0)		1408	-	44	44
		(0,4,0,0,0,0,0,0)	1	3456	32	-	45
		(2,1,0,1,0,0,0,0)		1408	_	44	45
	(0,0,0,0,0,0,0,1)	(2,3,0,0,0,0,0,0)	64	3456	45	-	46
	(0,0,0,0,0,0,0,1)	(4,0,0,1,0,0,0,0)		3456	35	-	46
		(4,2,0,0,0,0,0,0)		8064	38	-	47
		(6,1,0,0,0,0,0,0)	1	17280	39	-	48
		(8,0,0,0,0,0,0,0)	-	40320	41		49
		(0,0,0,0,0,0,0,0)		106496	38	-	85
		(0,2,0,1,0,0,0,0)	4	188416	43	_	86
		(0,4,0,0,0,0,0,0)		811008	36		87
		(2,1,0,1,0,0,0,0)	-	253952	34	-	87
	(0,0,0,2,0,0,0,0)	(2,3,0,0,0,0,0,0)	128	1007616	38	-	88
	(0,0,0,2,0,0,0,0)		120		41	-	
		(4,0,0,1,0,0,0,0)		712704 2727936	35	-	88
		(4,2,0,0,0,0,0,0)				-	89
		(6,1,0,0,0,0,0,0)		7741440	26	-	90
	/	(8,0,0,0,0,0,0,0)	100	23224320	41	-	91
	(0,1,0,0,0,1,0,0)	(2,0,0,0,0,1,0,0)	128	3456	34	-	58
		(2,0,2,0,0,0,0,0)		19008	32	-	59
	(1,0,0,0,0,0,1,0)	(1,0,0,0,0,0,1,0)	71	931	-	48	48
		(0,2,0,1,0,0,0,0)		16384	17	-	112
	(0,2,0,1,0,0,0,0)	(2,1,0,1,0,0,0,0)	192	16384	18	-	113
		(4,0,0,1,0,0,0,0)	1	147456	19	-	114
	(2,0,0,0,0,1,0,0)	(2,0,0,0,0,1,0,0)	80	19584	35	-	51
		(0,4,0,0,0,0,0,0)		-	-	-	171
		(2,3,0,0,0,0,0,0)		-	-	-	172
	(0,4,0,0,0,0,0,0)	(4,2,0,0,0,0,0,0)	256	-	-	-	173
		(6,1,0,0,0,0,0,0)	1	-	-	-	174
		(8,0,0,0,0,0,0,0)	1	828396011520	41	-	175
	(2,0,2,0,0,0,0,0)	(2,0,2,0,0,0,0,0)	152	12985920	25	-	96
	(2,1,0,1,0,0,0,0)	(2,1,0,1,0,0,0,0)	152	8192	15	-	74
	(3,0,0,0,1,0,0,0)	(3,0,0,0,1,0,0,0)	97	388800	19	-	56
	(2,3,0,0,0,0,0,0)	(2,3,0,0,0,0,0,0)	224	-	_	-	141
	(4,0,0,1,0,0,0,0)	(4,0,0,1,0,0,0,0)	128	7962624	21	-	69
	(4,2,0,0,0,0,0,0)	(4,2,0,0,0,0,0,0)	192	509607936	15	-	100
0	())-1-1-1-1-1-1					F.C.	
9		(0,0,0,0,0,0,0,0,1)		2025	-	56	56
	(0.0.0.0.0.0.0.1)	(0,0,3,0,0,0,0,0,0)	0.1	7128	43	-	58
	(0,0,0,0,0,0,0,0,1)	(3,0,2,0,0,0,0,0,0)	81	12960	45	-	60
		(6,0,1,0,0,0,0,0,0)	4	71280	47	-	62
		(9,0,0,0,0,0,0,0,0)		362880	49	-	64
		(0,0,1,0,0,1,0,0,0)	1	15552	30	-	86
	(00100105-)	(0,3,1,0,0,0,0,0,0)		124416	32	-	88
	(0,0,1,0,0,1,0,0,0)	(3,0,0,0,0,0,1,0,0)	162	62208	33	-	88
		(3,3,0,0,0,0,0,0,0)		1244160	24	-	90
	(1,0,0,0,0,0,0,1,0)	(1,0,0,0,0,0,0,1,0)	89	4096	30	-	63
		(0,0,3,0,0,0,0,0,0)		-	-	-	170
	(0,0,3,0,0,0,0,0,0)	(3,0,2,0,0,0,0,0,0)	243	-	-	-	172
		(6,0,1,0,0,0,0,0,0)		-	-	-	174
		(9,0,0,0,0,0,0,0,0)		948109639680	49	-	176
	(1,0,0,2,0,0,0,0,0)	(1,0,0,2,0,0,0,0,0)	177	12189696	14	-	124
	(1,1,0,0,0,1,0,0,0)	(1,1,0,0,0,1,0,0,0)	177	69120	16	-	84
	(2,0,0,0,0,0,1,0,0)	(2,0,0,0,0,0,1,0,0)	99	438256	32	-	67
	(3,0,0,0,0,1,0,0,0)	(3,0,0,0,0,1,0,0,0)	117	3110400	13	-	73
	(1,4,0,0,0,0,0,0,0)	(1,4,0,0,0,0,0,0,0)	353	-	-	-	246
	(3,0,2,0,0,0,0,0,0)	(3,0,2,0,0,0,0,0,0)	207	-	-	-	130
	(4,0,0,0,1,0,0,0,0)	(4,0,0,0,1,0,0,0,0)	149	199065600	18	-	87
	(3,3,0,0,0,0,0,0,0)	(3,3,0,0,0,0,0,0,0)	297	-	-	-	187
	. , , , , -, -, -, -, -, -, -, -, -, -, -	, , , , -, -, -, -, -, -, -, -, -, -, -		·	·	L	

Table 2: Number of vertices and dimensions of polytopes related to \mathfrak{A}_8 and $\mathfrak{A}_9.$