Opened Access The determining number of Kneser graphs
Estadísticas
Icon
Exportar a
Autor: Cáceres González, José
Garijo Royo, Delia
González Herrera, Antonio
Márquez Pérez, Alberto
Puertas González, María Luz
Departamento: Universidad de Sevilla. Departamento de Matemática Aplicada I (ETSII)
Fecha: 2013
Publicado en: . Discrete Mathematics & Theoretical Computer Science 15(1): 1-14 (2013)
Tipo de documento: Artículo
Resumen: A set of vertices S is a determining set of a graph G if every automorphism of G is uniquely determined by its action on S. The determining number of G is the minimum cardinality of a determining set of G. This paper studies the determining number of Kneser graphs. First, we compute the determining number of a wide range of Kneser graphs, concretely Kn:k with n≥k(k+1) / 2+1. In the language of group theory, these computations provide exact values for the base size of the symmetric group Sn acting on the k-subsets of {1,…, n}. Then, we establish for which Kneser graphs Kn:k the determining number is equal to n-k, answering a question posed by Boutin. Finally, we find all Kneser graphs with fixed determining number 5, extending the study developed by Boutin for determining number 2, 3 or 4.
Tamaño: 394.3Kb
Formato: PDF

URI: http://hdl.handle.net/11441/38829

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones