Repositorio de producción científica de la Universidad de Sevilla

Numerical study of two-dimensional disordered Klein-Gordon lattices with cubic soft anharmonicity

 

Advanced Search
 
Opened Access Numerical study of two-dimensional disordered Klein-Gordon lattices with cubic soft anharmonicity
Cites

Show item statistics
Icon
Export to
Author: Cuevas-Maraver, Jesús
Archilla, Juan F. R.
Palmero Acebedo, Faustino
Romero Romero, Francisco
Department: Universidad de Sevilla. Departamento de Física Aplicada I
Universidad de Sevilla. Departamento de Física Atómica, Molecular y Nuclear
Date: 2001
Published in: Journal of Physics A: Mathematical and General, 34(16), L221-L230
Document type: Article
Abstract: Localized oscillations appear both in ordered nonlinear lattices (breathers) and in disordered linear lattices (Anderson modes). Numerical studies on a class of two-dimensional systems of the Klein-Gordon type show that there exist two different types of bifurcation in the path from nonlinearity-order to linearity-disorder: inverse pitchforks, with or without period doubling, and saddle-nodes. This was discovered for a one-dimensional system in a previous work of Archilla, MacKay and Marin. The appearance of a saddle-node bifurcation indicates that nonlinearity and disorder begin to interfere destructively and localization is not possible. In contrast, the appearance of a pitchfork bifurcation indicates that localization persists.
Size: 306.3Kb
Format: PDF

URI: http://hdl.handle.net/11441/23750

DOI: 10.1088/0305-4470/34/16/101

See editor´s version

This work is under a Creative Commons License: 
Attribution-NonCommercial-NoDerivatives 4.0 Internacional

This item appears in the following Collection(s)