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Abstract.
Localized oscillations appear both in ordered nonlinear lattices (breathers)

and in disordered linear lattices (Anderson modes). Numerical studies on a class
of two-dimensional systems of the Klein-Gordon type, show that there exist two
different types of bifurcations in the path from nonlinearity–order to linearity–
disorder: inverse pitchforks, with or without period doubling, and saddle-nodes.
This was discovered for a one-dimensional system in a previous work of Archilla,
MacKay and Marin. The appearance of a saddle-node bifurcation indicates that
nonlinearity and disorder begin to interfere destructively and localization is not
possible. On the contrary, the appearance of a pitchfork bifurcation indicates that
localization persists.
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1. Introduction

Some models of spatially discrete systems consider particles with anharmonic
potentials and, usually, the distribution of masses and couplings are supposed spatially
homogeneous (nonlinear ordered systems). Other models refer to particles with
harmonic interactions and a random distribution of masses and couplings (linear
disordered systems).

Time–periodic and spatially–localized oscillations (LOs) appear in these
dynamical systems due to different causes: (i) in nonlinear ordered systems of weakly
coupled oscillators, LOs are caused by nonlinearity and they are called breathers
[1, 2, 3]; (ii) in linear disordered systems, LOs are a consequence of disorder, and they
are referred as Anderson modes [4]. In nonlinear–disordered systems, localization can
be produced by any of the two causes. That is why, in this paper, we refer to them
as LOs.

For a system with both nonlinearity and disorder, it is of great importance to
know which is the dominant mechanism producing localization. This problem has
been object of recent research [5, 6, 7], and different approaches has been proposed.

One approach considers systems with fixed degrees of nonlinearity and disorder,
and LOs are studied varying the breather frequency [6, 7]. Another approach considers
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a class of systems such that both nonlinearity and disorder can be varied continuously
from the nonlinear ordered limit to the linear disordered limit. By means of the study
of a class of one-dimensional models of the Klein-Gordon type, it has been proved
numerically [5] that breathers can be continuously connected to Anderson modes.

The studies developed in disordered anharmonic media has been carried out in
one-dimensional systems. The next step could be to address the problem in two-
dimensional systems, which have been widely studied without disorder [8, 9, 10].
These models can be used to explain some properties of layers in solids [11, 12], high–
temperature superconductors [13] and photonic crystal waveguides [14]. Thus, it can
be interesting to address the question whether in these two–dimensional systems there
also exists a continuous path that transforms breathers into Anderson modes. This
study would allow to clarify the interplay between the two mechanisms of localization
in two–dimensional lattices.

In this paper, we have found an affirmative answer to the question about the
existence of a connection of some families of discrete breathers to Anderson modes, in
two–dimensional lattices.

2. The model

We study an anharmonic Hamiltonian square lattice of the Klein-Gordon type, i.e.,
with an on site potential. The Hamiltonian is:
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where un1n2 are the coordinates of the particles with respect to their equilibrium
positions; ωn1n2 are the frequencies of the small amplitude oscillation of the particles;
−s u3

n1n2
is the anharmonic part of the on-site potential for the particle (n1, n2); s

is a parameter which describes the degree of anharmonicity and takes its value in
[0, 1], being s = 0 the harmonic–disordered case, and s = 1, the anharmonic–ordered
case; and ε is a coupling parameter. The coupling potential is harmonic and nearest
neighbour, though both this assumptions can be relaxed.

The disorder is implemented by means of the curvatures ω2
n1n2

of the local
potentials at their minima. Since the masses have all been chosen equal to 1, this
gives rise to frequencies ωn1n2 . Suppose they take two values randomly distributed,
say:

ωn1n2 = ω0 (1 + ρ
rn1n2

2
). (2)

where ρ is a disorder parameter that takes its value in the interval [0, 1] and rn1n2 are
the components of a random vector which can be either +1 or −1. At ρ = 0, there is
no disorder and all the frequencies are equal to ω0, which is taken with value 1. At
ρ = 1, the most disordered case, the frequencies are either 0.5 ω0 or 1.5 ω0. This is
the most important difference between our model and the one studied by Kopidakis
and Aubry [6] since they take an continuous distribution of random frequencies.
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The parameter ρ is considered a monotonic function ρ = ρ(s) of the nonlinearity
s, with ρ(0) = 1 and ρ(1) = 0, giving a path from the anharmonic ordered case to the
harmonic disordered case. The paths used in this paper are of the type:

ρ(s) = 1− sq, q > 0, (3)

and specifically we have used the values q = 1/4 and q = 1.
The dynamical equations of the system are (ṗn1n2 ≡ ün1n2 = −∂H/∂un1n2):

Fn1n2(u, s, ε) = ün1n2 + ω2
n1n2

un1n2 − 3 s u2
n1n2

+

+ε(4un1n2 − un1−1n2 − un1+1n2 − un1 n2+1 − un1 n2−1) = 0. (4)

The breathers and Anderson modes solutions are obtained using the same
methods as in [5] applied to two-dimensional systems. These are explained in section
3.

To make the continuation two different samples of breathers (shown in figure 1
and figure 10) are taken at the nonlinear–ordered limit (s = 1) and the value of the
parameter s is varied until it reaches the linear–disordered limit (s = 0). In this path,
we keep constant the action I of the system ‡ and the random vector rn1n2

(defined
in equation (2)). This is the same procedure used in [5].

3. Obtaining breathers and Anderson modes

3.1. Obtaining breathers

In order to obtain breathers, we use a variant [5] of the numerical methods described
in [15, 16, 17] .

We denote by E2
s (ωb) the space of time-periodic, time-reversible solutions of

frequency ωb, with continuous second derivative. Therefore the functions un1n2(t)
can be approximated by truncated Fourier series of the form:

un1n2(t) =

km∑
k=−km

zkn1n2
eikωbt. (5)

The time-symmetry property of un1n2(t) and the fact that the operator in (4) is
real, determine:

un1n2(t) = z0 +

k=km∑
k=1

2zkn1n2
cos(kωbt). (6)

The first step for obtaining a breather is to find the solution for the isolated
oscillator with a given frequency ωb. In order to do this, the Newton-Raphson method
is used, being the seed the solution of the harmonic problem.

The second step is to obtain the breather from the anticontinuous limit, which
consists of a particle with the previously calculated solution asigned to a particle being
the others at rest. This is done by varying with small steps the coupling parameter ε
from ε = 0 to the desired value.

‡ In this case, the action is the phase–space’s area, i.e., I =
∮

p dq
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3.2. Anderson modes solutions

For a harmonic on-site potential, the dynamical equations of the system (Eq. (4)) can
be written:

ün1n2 = −ω(s)2n1n2
un1n2 −

−ε(4un1n2 − un1−1n2 − un1+1n2 − un1 n2+1 − un1 n2−1), (7)

or in an abbreviated notation:

ü = −Ω(s)2u. (8)

The spectrum of Ω(s)2 consists of m2 positive eigenvalues, ω̃k(s)
2 which

correspond to the square of the phonon frequencies for a particular value of s. The
eigenvectors of Ω(s)2, vk(s), are called Anderson modes and are spatially localised
(cf. [18]) for our particular disorder configuration. Thus, equation (8) has time-
reversible, spatially localised, periodic solutions:

uk
n1n2

(t) = cos(ω̃kt)v
k
n1n2

(9)

4. Bifurcation analysis

We have analyzed a system with Hamiltonian (1), taking ε = 0.01 and m = 17, so that
the number of particles is 17 × 17, which proves to be large enough to observe LOs.
The number of Fourier components of the solution are 10, which may appear small,
but truncation has been carried out when the last Fourier coefficient is ∼ 10−6 times
the magnitude of the largest one. Besides, when the degree of linearity increases, this
ratio decreases.

The initial seed used in the continuation procedure at s = 1 is the single breather
solution obtained from the uncoupled limit, i.e. ϵ = 0, with all the particles at rest
except the central one (n1 = 9, n2 = 9), which oscillates with phase 0 at t = 0 and
frequency ωb = 0.85. This allows a relatively large window of values outside the linear
modes band [2]. The resulting value of the action is I = 0.1035, and the profile of this
breather is shown in figure 1.

It could be expected that the bifurcations we obtained in the path from the
“breather limit to the “Anderson limit were either inverse pitchforks or saddle nodes
because an enormous number of solutions must be connected to a relatively small
number of them. The number of possible LOs in an square lattice of m×m particles,
at the nonlinear ordered limit (multibreathers) is (9m − 1)/2, while the number of
possible LOs at the linear disordered limit (Anderson modes) is only m2.

We present now the results obtained for different paths (3) from the nonlinear
ordered case (s = 1) to the linear disordered case (s = 1):

4.1. Path q = 1/4

The path begins taking at s = 1 the breather in figure 1. The continuation finishes
at s = 0 in the Anderson mode shown in figure 2. When s decreases there exists a
bifurcation for a value of s in the interval (0.264, 0.265). Figure 3 shows the breather
profile just before and after this bifurcation.

At the bifurcation point, the LO frequency enters the linearized modes band
(figure 4), which enables us to confirm that we have found a bifurcation.
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Figure 1. Profile of the breather used as seed for obtaining pitchfork bifurcations
(ωb = 0.85 and s = 1).
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Figure 2. Profile of the Anderson mode which are at the end of the 1/4 path.

The bifurcation is an imperfect pitchfork, which means that the branches are
slightly separated, as can be seen in figure 5. The central branch corresponds to
the initially continued solution, while the outer branches are obtained adding or
subtracting to the solution in a point of the central branch (not very close to the
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Figure 3. LO before (s = 0.265) and after (s = 0.264) the bifurcation. 1/4 path.
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Figure 4. Frequencies of the LOs (also twice its frequency) and all the linearised
modes about equilibrium for the 1/4 path. It can be seen how the breather
frequency enters the phonon band when the continuation parameter decreases,
concretely between s = 0.265 and s = 0.264.

bifurcation) the eigenvector corresponding to the centre subspace, and using the new
vector as a seed for the Newton method. The LOs at the end of the outer branches
are shown in figure 6. The main difference between the outer branches and the central
one is the existence of a “hump” centered in the particle (n1 = 13, n2 = 8).

A linear stability analysis [2] of the solutions shows that all the branches are
linearly stable.
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Figure 5. Bifurcation diagram in the 1/4 path.
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Figure 6. LO just before bifurcation (s = 0.265) in the upper and lower branches
of the pitchfork. 1/4 path.

4.2. Linear path

This path begins taking at s = 1 the same breather as before (shown in figure 1).
The continuation finishes at s = 0 in the Anderson mode shown in figure 7. When s
decreases there exists an inverse period-doubling bifurcation for a values of s within the
interval (0.336, 0.337). At this value, all the odd Fourier components of the solution
become zero.

In figure 8 it is shown the breather profile before the bifurcation, which
corresponds to the lower branch in the bifurcation diagram (figure 9). The profile
of the upper branch breather is symmetric to the represented in figure 8, because
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Figure 7. Profile of the Anderson mode which are at the end of the linear path.
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Figure 8. Breather profile just before bifurcation (s = 0.337) in the lower branch.
The profile in the upper branch is symmetric with respect to the XY-plane. Linear
path.
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Figure 9. Inverse period-doubling bifurcation in the linear path.

the bifurcation is an inverse period-doubling. The profile of the breather after the
bifurcation, i.e. from s = 0.336 to s = 0, is similar to the Anderson mode in
figure 7. The central branch of the pitchfork bifurcation is LOs which delocalizes when
s increases. Numeric calculations show that all these branches are linearly stable.

4.3. Saddle node in the linear path

In our system, for all the values of q with the same random vector, and starting with
the same one–site breather, a pitchfork bifurcation is obtained. Saddle nodes must
appear with the initial breather located in a different site.

Thus, we have chosen as the seed solution at s = 0 the breather in figure 10. It
has the particle (13,13) excited and oscillates with phase 0 at t = 0 and frequency
ωb = 0.85. It corresponds to the lower branch in the bifurcation diagram (figure 11).
The breather corresponding to the upper branch has three peaks, in (13,13), (13,14)
and (14,14) (figure 10), and oscillates with ωb = 0.9701. The LOs at the lower
branch in the bifurcation diagram are linearly stable and the LOs at the upper one
are unstable.

The bifurcation occurs at a value of s within the interval (0.9300, 0.9301). At this
value, the breather has the profile shown in figure 11.

5. Conclusions

We have studied the bifurcations that appear in a class of two-dimensional disordered
system in the path from nonlinearity–order to linearity–disorder. We have obtained
two different types: saddle nodes and inverse pitchforks, either with or without inverse
period-doubling.
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Figure 10. Profile of the breathers corresponding to the upper and lower branch
at the turning point in the linear path for s = 1.
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Figure 11. Breather profile at the turning point (s = 0.9301). Linear path.

It would be interesting to find out which multibreathers, and in which conditions,
can be connected to Anderson modes. This is an impossible numerical task, because
in a system with m = 17, the number of multibreathers is ∼ 1016.

There are several open questions: Why does appear a period-doubling
bifurcation? What is the influence of keeping constant the action? Are these properties
maintained by other classes of two–dimensional lattices, that is, with different types
of anharmonicity or with random couplings between the particles? The answers need
more analytical and numerical study, which will be object of further research.
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Figure 12. Turning point in the linear path.
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