Por motivos de mantenimiento se ha deshabilitado el inicio de sesión temporalmente. Rogamos disculpen las molestias.
Article
Numerical study of two-dimensional disordered Klein-Gordon lattices with cubic soft anharmonicity
Author/s | Cuevas-Maraver, Jesús
Archilla, Juan F. R. Palmero Acebedo, Faustino Romero Romero, Francisco |
Department | Universidad de Sevilla. Departamento de Física Aplicada I Universidad de Sevilla. Departamento de Física Atómica, Molecular y Nuclear |
Publication Date | 2001 |
Deposit Date | 2015-04-10 |
Published in |
|
Abstract | Localized oscillations appear both in ordered nonlinear lattices (breathers) and in disordered linear lattices (Anderson modes). Numerical studies on a class of two-dimensional systems of the Klein-Gordon type show that ... Localized oscillations appear both in ordered nonlinear lattices (breathers) and in disordered linear lattices (Anderson modes). Numerical studies on a class of two-dimensional systems of the Klein-Gordon type show that there exist two different types of bifurcation in the path from nonlinearity-order to linearity-disorder: inverse pitchforks, with or without period doubling, and saddle-nodes. This was discovered for a one-dimensional system in a previous work of Archilla, MacKay and Marin. The appearance of a saddle-node bifurcation indicates that nonlinearity and disorder begin to interfere destructively and localization is not possible. In contrast, the appearance of a pitchfork bifurcation indicates that localization persists. |
Project ID. | European Commission under the RTN project LOCNET, HPRN-CT-1999-0016. European Commission through grant number HPRI-1999-CT-00026 (TRACS at EPCC) |
Files | Size | Format | View | Description |
---|---|---|---|---|
JPA_Cuevas_2001_preprint.pdf | 306.3Kb | [PDF] | View/ | |