Mostrar el registro sencillo del ítem

Ponencia

dc.creatorKeil, Matthias Svenes
dc.creatorRodríguez Vázquez, Ángel Benitoes
dc.date.accessioned2020-04-29T13:47:40Z
dc.date.available2020-04-29T13:47:40Z
dc.date.issued2003
dc.identifier.citationKeil, M.S. y Rodríguez Vázquez, Á.B. (2003). Towards a computational approach for collision avoidance with real-world scenes. En Bioengineered and Bioinspired Systems (285-296), Maspalomas, España: SPIE- The International Society for Optical Engineering.
dc.identifier.issn0277-786Xes
dc.identifier.issn1996-756Xes
dc.identifier.urihttps://hdl.handle.net/11441/95975
dc.description.abstractIn the central nervous systems of animals like pigeons and locusts, neurons were identified which signal objects approaching the animal on a direct collision course. In order to timely initiate escape behavior, these neurons must recognize a possible approach (or at least differentiate it from similar but non-threatening situations), and estimate the time-to-collision (ttc). Unraveling the neural circuitry for collision avoidance, and identifying the underlying computational principles, should thus be promising for building vision-based neuromorphic architectures, which in the near future could find applications in cars or planes. Unfortunately, a corresponding computational architecture which is able to handle real-situations (e.g. moving backgrounds, different lighting conditions) is still not available (successful collision avoidance of a robot was demonstrated only for a closed environment). Here we present two computational models for signalling impending collision. These models are parsimonious since they posses only the minimum number of computational units which are essential to reproduce corresponding biological data. Our models show robust performance in adverse situations, such as with approaching low-contrast objects, or with highly textured backgrounds. Furthermore, a condition is proposed under which the responses of our models match the so-called η-function. We finally discuss which components need to be added to our model to convert it into a full-fledged real-world-environment collision detector.es
dc.formatapplication/pdfes
dc.format.extent12 p.es
dc.language.isoenges
dc.publisherSPIE- The International Society for Optical Engineeringes
dc.relation.ispartofBioengineered and Bioinspired Systems (2003), pp. 285-296.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectCollision avoidancees
dc.subjectComputational modeles
dc.subjectLGMDes
dc.subjectLocustes
dc.subjectLooming signallinges
dc.subjectNeurodynamicses
dc.titleTowards a computational approach for collision avoidance with real-world sceneses
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Electrónica y Electromagnetismoes
dc.relation.publisherversionhttp://dx.doi.org/10.1117/12.499054es
dc.identifier.doi10.1117/12.499054es
dc.publication.initialPage285es
dc.publication.endPage296es
dc.eventtitleBioengineered and Bioinspired Systemses
dc.eventinstitutionMaspalomas, Españaes
dc.identifier.sisius5568600es

FicherosTamañoFormatoVerDescripción
Toward a computational approach.pdf8.340MbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional