Show simple item record

Article

dc.creatorTlelo-Cuautle, Estebanes
dc.creatorDíaz-Muñoz, Jonathan Danieles
dc.creatorGonzález-Zapata, Astrid Maritzaes
dc.creatorLi, Ruies
dc.creatorLeón-Salas, Walter Danieles
dc.creatorFernández Fernández, Francisco Vidales
dc.creatorGuillén-Fernández, Omares
dc.creatorCruz-Vega, Israeles
dc.date.accessioned2020-04-27T15:26:27Z
dc.date.available2020-04-27T15:26:27Z
dc.date.issued2020
dc.identifier.citationTlelo-Cuautle, E., Díaz-Muñoz, J.D., González-Zapata, A.M., Li, R., León-Salas, W.D., Fernández Fernández, F.V.,...,Cruz-Vega, I. (2020). Chaotic image encryption using hopfield and hindmarsh–rose neurons implemented on FPGA. Sensors, 20 (5), 1326.
dc.identifier.issn1424-3210es
dc.identifier.issn1424-8220es
dc.identifier.urihttps://hdl.handle.net/11441/95844
dc.description.abstractChaotic systems implemented by artificial neural networks are good candidates for data encryption. In this manner, this paper introduces the cryptographic application of the Hopfield and the Hindmarsh–Rose neurons. The contribution is focused on finding suitable coefficient values of the neurons to generate robust random binary sequences that can be used in image encryption. This task is performed by evaluating the bifurcation diagrams from which one chooses appropriate coefficient values of the mathematical models that produce high positive Lyapunov exponent and Kaplan–Yorke dimension values, which are computed using TISEAN. The randomness of both the Hopfield and the Hindmarsh–Rose neurons is evaluated from chaotic time series data by performing National Institute of Standard and Technology (NIST) tests. The implementation of both neurons is done using field-programmable gate arrays whose architectures are used to develop an encryption system for RGB images. The success of the encryption system is confirmed by performing correlation, histogram, variance, entropy, and Number of Pixel Change Rate (NPCR) tests.es
dc.formatapplication/pdfes
dc.format.extent22 p.es
dc.language.isoenges
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)es
dc.relation.ispartofSensors, 20 (5), 1326.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectChaoses
dc.subjectCorrelationes
dc.subjectFPGAes
dc.subjectHindmarsh-Rose neurones
dc.subjectHopfield neurones
dc.subjectImage encryptiones
dc.subjectLyapunov exponentes
dc.titleChaotic image encryption using hopfield and hindmarsh–rose neurons implemented on FPGAes
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Electrónica y Electromagnetismoes
dc.relation.publisherversionhttp://dx.doi.org/10.3390/s20051326es
dc.identifier.doi10.3390/s20051326es
dc.journaltitleSensorses
dc.publication.volumen20es
dc.publication.issue5es
dc.publication.initialPage1326es

FilesSizeFormatViewDescription
Chaotic Image Encryption.pdf9.438MbIcon   [PDF] View/Open  

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as: Attribution-NonCommercial-NoDerivatives 4.0 Internacional