Mostrar el registro sencillo del ítem

Ponencia

dc.creatorLiu, Junxiues
dc.creatorHarkin, Jimes
dc.creatorMcElholm, Malachyes
dc.creatorMcDaid, Liames
dc.creatorJiménez Fernández, Ángel Franciscoes
dc.creatorLinares Barranco, Alejandroes
dc.date.accessioned2020-01-22T10:22:33Z
dc.date.available2020-01-22T10:22:33Z
dc.date.issued2015
dc.identifier.citationLiu, J., Harkin, J., McElholm, M., McDaid, L., Jiménez Fernández, Á.F. y Linares Barranco, A. (2015). Case study: Bio-inspired self-adaptive strategy for spike-based PID controller. En ISCAS 2015: IEEE International Symposium on Circuits and Systems (2700-2703), Lisboa, Portugal: IEEE Computer Society.
dc.identifier.isbn978-1-4799-8391-9es
dc.identifier.issn0271-4302es
dc.identifier.urihttps://hdl.handle.net/11441/92096
dc.description.abstractA key requirement for modern large scale neuromorphic systems is the ability to detect and diagnose faults and to explore self-correction strategies. In particular, to perform this under area-constraints which meet scalability requirements of large neuromorphic systems. A bio-inspired online fault detection and self-correction mechanism for neuro-inspired PID controllers is presented in this paper. This strategy employs a fault detection unit for online testing of the PID controller; uses a fault detection manager to perform the detection procedure across multiple controllers, and a controller selection mechanism to select an available fault-free controller to provide a corrective step in restoring system functionality. The novelty of the proposed work is that the fault detection method, using synapse models with excitatory and inhibitory responses, is applied to a robotic spike-based PID controller. The results are presented for robotic motor controllers and show that the proposed bioinspired self-detection and self-correction strategy can detect faults and re-allocate resources to restore the controller’s functionality. In particular, the case study demonstrates the compactness (~1.4% area overhead) of the fault detection mechanism for large scale robotic controllers.es
dc.description.sponsorshipMinisterio de Economía y Competitividad TEC2012-37868-C04-02es
dc.formatapplication/pdfes
dc.language.isoenges
dc.publisherIEEE Computer Societyes
dc.relation.ispartofISCAS 2015: IEEE International Symposium on Circuits and Systems (2015), p 2700-2703
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectBio-inspired systemses
dc.subjectRoboticses
dc.subjectFault tolerantes
dc.subjectselfcorrectiones
dc.subjectHardware adaptiones
dc.titleCase study: Bio-inspired self-adaptive strategy for spike-based PID controlleres
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/submittedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Arquitectura y Tecnología de Computadoreses
dc.relation.projectIDTEC2012-37868-C04-02es
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/7169243es
dc.identifier.doi10.1109/ISCAS.2015.7169243es
dc.contributor.groupUniversidad de Sevilla. TEP-108: Robótica y Tecnología de Computadores Aplicada a la Rehabilitaciónes
idus.format.extent4es
dc.publication.initialPage2700es
dc.publication.endPage2703es
dc.eventtitleISCAS 2015: IEEE International Symposium on Circuits and Systemses
dc.eventinstitutionLisboa, Portugales
dc.relation.publicationplaceNew York, USAes

FicherosTamañoFormatoVerDescripción
Case study, Bio-inspired self- ...739.4KbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional