Mostrar el registro sencillo del ítem

Artículo

dc.creatorKrishnaswamy, Jagdishes
dc.creatorBuroni Cuneo, Federico Carloses
dc.creatorGarcía Macías, Enriquees
dc.creatorMelnik, Roderickes
dc.creatorRodríguez de Tembleque Solano, Luises
dc.creatorSáez Pérez, Andréses
dc.date.accessioned2024-02-09T11:29:38Z
dc.date.available2024-02-09T11:29:38Z
dc.date.issued2020-01
dc.identifier.citationKrishnaswamy, J., Buroni, F.C., García Macías, E., Melnik, R., Rodríguez de Tembleque, L. y Sáez, A. (2020). Design of lead-free PVDF/CNT/BaTiO3 piezocomposites for sensing and energy harvesting: The role of polycrystallinity, nanoadditives, and anisotropy. Smart Materials and Structures, 29 (1), 015021. https://doi.org/10.1088/1361-665X/ab547d.
dc.identifier.issn0964-1726es
dc.identifier.issn1361-665Xes
dc.identifier.urihttps://hdl.handle.net/11441/155040
dc.description.abstractLead-free piezoelectric composites with polymeric matrices offer a scalable and eco-friendly solution to sensing and energy harvesting applications. Piezoelectric polymers such as PVDF are particularly interesting because of the possibility to engineer the performance of these materials through addition of higher-performance piezoelectric inclusions and nanomaterials and to scalably manufacture such composites by emerging techniques such as 3D printing. This work makes two contributions, namely towards composite design and towards development of accurate effective property models. In the context of composite design, we evaluate the piezoelectric performance of PVDF modified by the addition of polycrystalline-BaTiO3 and multiwalled carbon nanotubes. Firstly, the addition of BaTiO3 dramatically improves the electric field within the composite offering significant advantages specially at low BaTiO3 concentrations. Secondly, the addition of carbon nanotubes to the matrix, particularly at higher BaTiO3 loadings, leads to an order of magnitude increase in the piezoelectric flux generation. Further enhancement in the flux generation is also possible by tuning the polycrystallinity of the BaTiO3 inclusions. However, these behaviours are inclusion-driven and the piezoelectric behaviour of the matrix does not contribute to this improvement. Importantly, a small addition of BaTiO3 and CNT into the PVDF matrix, away from percolation, can simultaneously improve flux and electric field generation. In this part of the work, we assume an isotropic PVDF matrix. Given that PVDF is elastically anisotropic, the second aspect of this work is the development of an effective property model for CNT-modified PVDF, taking into account the elastic anisotropy of poled PVDF, to predict the elastic coefficients of CNT-modified PVDF matrices, thus undertaking a key step towards modelling anisotropic piezoelectric composites. We show that the anisotropy-based model makes similar predictions in the effective composite behaviour, indicating that in the case of PVDF-based piezocomposites, the anisotropy of the matrix does not significantly affect the piezoresponse.es
dc.formatapplication/pdfes
dc.format.extent13 p.es
dc.language.isoenges
dc.publisherIOP Publishing Ltdes
dc.relation.ispartofSmart Materials and Structures, 29 (1), 015021.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectLead-free piezoelectrices
dc.subjectCompositees
dc.subjectPolycrystales
dc.subjectCarbon nanotubees
dc.subjectMultiscale design and homogenizationes
dc.subjectFinite element analysises
dc.subjectSmart materialses
dc.titleDesign of lead-free PVDF/CNT/BaTiO3 piezocomposites for sensing and energy harvesting: The role of polycrystallinity, nanoadditives, and anisotropyes
dc.typeinfo:eu-repo/semantics/articlees
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Ingeniería Mecánica y de Fabricaciónes
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Mecánica de Medios Continuos y Teoría de Estructurases
dc.relation.projectIDRTI2018-094945-B-C21es
dc.relation.projectIDDPI2017-89162-Res
dc.relation.publisherversionhttps://iopscience.iop.org/article/10.1088/1361-665X/ab547des
dc.identifier.doi10.1088/1361-665X/ab547des
dc.contributor.groupUniversidad de Sevilla. TEP245: Ingeniería de las Estructurases
dc.journaltitleSmart Materials and Structureses
dc.publication.volumen29es
dc.publication.issue1es
dc.publication.initialPage015021es
dc.contributor.funderMinisterio de Economía y Competitividad (MINECO). Españaes
dc.contributor.funderEuropean Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER)es

FicherosTamañoFormatoVerDescripción
SMS_2020_Krishnaswamy_Buroni_S ...2.195MbIcon   [PDF] Ver/Abrir   Versión aceptada

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional