Mostrar el registro sencillo del ítem

Artículo

dc.creatorFernández Nieto, Enrique Domingoes
dc.creatorGarres-Díaz, Josées
dc.creatorVigneaux, Paules
dc.date.accessioned2023-11-29T07:09:17Z
dc.date.available2023-11-29T07:09:17Z
dc.date.issued2023-06-01
dc.identifier.citationFernández Nieto, E.D., Garres-Díaz, J. y Vigneaux, P. (2023). Multilayer models for hydrostatic Herschel-Bulkley viscoplastic flows. Computers and Mathematics with Applications, 139, 99-117. https://doi.org/10.1016/j.camwa.2023.03.018.
dc.identifier.issn0898-1221es
dc.identifier.urihttps://hdl.handle.net/11441/151789
dc.descriptionThis is an open access article under the CC BY-NC-ND licensees
dc.description.abstractStarting from Navier-Stokes’ equation we derive two shallow water multilayer models for yield stress fluids, depending on the asymptotic analysis. One of them takes into account the normal stress contributions, making possible to recover a pseudoplug layer instead of a purely plug zone. A specific numerical scheme is designed to solve this model thanks to a finite volume discretization. It involves well-balancing techniques to be able to compute accurately the transitions between yielded and unyielded (or pseudoplug) zones, an important feature of the original partial differential equations’ model. We perform numerical simulations on various test cases relevant to these physics: analytical solution of a uniform flow, steady solutions for arrested state, and a viscoplastic dam break. Simulations agree well when we perform comparisons with physical experiments of the group of Christophe Ancey (EPFL) and we make a comparative study including shallow water models and lubrication models that they present in Ancey et al. (2012) [3]. Thanks to the multilayer structure of our model, we can go further on the description of the vertical structure associated to the (bottom) sheared layer and the top (pseudo-)plug layer.es
dc.formatapplication/pdfes
dc.format.extent19 p.es
dc.language.isoenges
dc.publisherElsevieres
dc.relation.ispartofComputers and Mathematics with Applications, 139, 99-117.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMultilayer shallow water modeles
dc.subjectFinite volumees
dc.subjectWell-balancedes
dc.subjectLubrication theoryes
dc.subjectDam break flowes
dc.subjectComparison with physical experimentses
dc.titleMultilayer models for hydrostatic Herschel-Bulkley viscoplastic flowses
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Matemática Aplicada I (ETSII)es
dc.contributor.affiliationes
dc.relation.projectIDRTI2018-096064-B-C22es
dc.relation.projectIDANR-20-CE46-0006es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0898122123001141?via%3Dihubes
dc.identifier.doi10.1016/j.camwa.2023.03.018es
dc.contributor.groupUniversidad de Sevilla. FQM120: Modelado Matemático y Simulación de Sistemas Medioambientaleses
dc.journaltitleComputers and Mathematics with Applicationses
dc.publication.volumen139es
dc.publication.initialPage99es
dc.publication.endPage117es
dc.contributor.funderEuropean Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER)es
dc.contributor.funderGobierno de Españaes
dc.contributor.funderFrench National Research Agency (ANR)es
dc.contributor.funderCentre national de la recherche scientifique (CNRS). Francees

FicherosTamañoFormatoVerDescripción
CMA_2023_Fernández-Nieto_Garre ...7.351MbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional