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Starting from Navier-Stokes’ equation we derive two shallow water multilayer models for yield stress fluids, 
depending on the asymptotic analysis. One of them takes into account the normal stress contributions, making 
possible to recover a pseudoplug layer instead of a purely plug zone. A specific numerical scheme is designed 
to solve this model thanks to a finite volume discretization. It involves well-balancing techniques to be able to 
compute accurately the transitions between yielded and unyielded (or pseudoplug) zones, an important feature of 
the original partial differential equations’ model. We perform numerical simulations on various test cases relevant 
to these physics: analytical solution of a uniform flow, steady solutions for arrested state, and a viscoplastic 
dam break. Simulations agree well when we perform comparisons with physical experiments of the group of 
Christophe Ancey (EPFL) and we make a comparative study including shallow water models and lubrication 
models that they present in Ancey et al. (2012) [3]. Thanks to the multilayer structure of our model, we can 
go further on the description of the vertical structure associated to the (bottom) sheared layer and the top 
(pseudo-)plug layer.
1. Introduction

Flows where the material can be either in a fluid state or in a solid 
state are ubiquitous in the nature or in the industry. One class of mod-

els to describe such materials is the yield stress fluids formalism, which 
goes back to the turn of the 20th century with Schwedoff [47], Bing-

ham [13] and Herschel & Bulkley [37]. For these models, also called 
viscoplastic models, if the stress of the material is above the yield stress 
threshold 𝜏𝑦, it behaves like a fluid. While the material is rigid when 
its stress is below 𝜏𝑦. Such flow behavior can be encountered in many 
practical situations such as food pastes, cosmetics creams, heavy oils, 
mud and clays, lava flows and avalanches [10,23,33].

In this article, we are interested in the derivation of multilayer in-

tegrated Herschel-Bulkley models for shallow flows, as well as in the 
design of numerical algorithms to solve the resulting equations. The 
goal is to simulate the evolution of thin sheets of viscoplastic materials 
on inclined planes and, in particular, to be able to recover general veloc-

ity profiles and to compute precisely the transitions between fluid and 
rigid states. We have particularly in mind applications in geophysics.
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As far as viscoplastic flows are concerned, the constitutive law for 
Herschel-Bulkley fluids is considered. It links the deviatoric stress tensor 
𝝉 and the rate of deformation tensor

𝐷(𝒖) = 1
2
(∇𝒖+ (∇𝒖)′), (1)

by defining

⎧⎪⎨⎪⎩
𝝉 = 2𝑛𝐾‖𝐷(𝒖)‖𝑛−1𝐷(𝒖) +

𝜏𝑦‖𝐷(𝒖)‖𝐷(𝒖) if ‖𝐷(𝒖)‖ ≠ 0,

‖𝝉‖ ≤ 𝜏𝑦 if ‖𝐷(𝒖)‖ = 0,

(2)

where 𝜏𝑦 (𝑃𝑎), 𝐾 (𝑃𝑎 ⋅ 𝑠𝑛) and 𝑛 are the yield stress, consistency, and 
power index of the material, respectively. Notice that if 𝑛 = 1 and 𝐾
is identified with 𝜂, the dynamic viscosity, we find the simplest and 
most emblematic constitutive law for viscoplastic fluids, the Bingham 
law. This latter law can be viewed as a generalization (adding a shift 
with the threshold 𝜏𝑦) of the Newtonian constitutive law leading to 
Navier-Stokes’ equation, namely 𝝉 = 2𝜂𝐷(𝒖). One of the difficulties of 
Bingham-type laws is that the deviatoric stress is not uniquely defined 
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when the material is rigid (‖𝐷(𝒖)‖ = 0). Mathematical tools belonging 
to non-smooth optimization need to be used in order to properly solve 
these models (e.g. duality methods like augmented Lagrangian). In par-

ticular this is crucial in order to capture a flow which evolves from a 
deformable state to a rigid state. Of note, nearly one century after Bing-

ham, in the context of dense granular flows, the so called 𝜇(𝐼) rheology 
was introduced (see [21,40]), which makes use of a variable coefficient 
for 𝜏𝑦 through the pressure and the state of the granular packing (en-

coded in the friction coefficient 𝜇(𝐼)). In other words, this 𝜇(𝐼) constitu-

tive law can be viewed has a yield criterion of the Drucker-Prager type 
[24]. We mention here Bingham and 𝜇(𝐼) together because they both 
share the threshold behavior and are both involved in some geophysi-

cal applications. However their physical background is different: while 
as said 𝜇(𝐼) is linked to granular material, Bingham is better suited to 
model more cohesive materials. To fix the ideas, one of the most used 
laboratory prototype of a viscoplastic material is the Carbopol mixture 
or the Kaolin mixture [14]. The differences in the equations’ structure 
equally translate in the obtained vertical velocity profiles for both kind 
of rheologies: for Bingham, there is a strong shear zone at the bottom 
and a moving “plug”-like layer at the top of the material. While for 
the 𝜇(𝐼) rheology, there can be a significant static unsheared bottom 
layer with a sheared moving layer at the top. So in terms of (vertical) 
shear, these two rheologies are totally opposed. This difference can be 
observed in real flows when the material is of the “more cohesive” type, 
as opposed to the “granular” type.

In geophysical flows, it is known that the full resolution of 3D 
Navier-Stokes free-surface flows is implementable but computationally 
very expensive. This is even worse for materials with more complex 
rheologies (going from Newtonian to non-Newtonian constitutive laws) 
because the models involve more non-linearities (power laws, thresh-

old, time-space dependent laws, etc.) leading to supplementary algo-

rithmic costs. As a consequence, computation times for 3D flows are 
not feasible in practice. Hence, a classical approach to lower the com-

putational cost is to reduce the dimension of the problem from 3D to 2D 
through asymptotic analysis. Indeed, geophysical flows often verify that 
the characteristic horizontal length is much larger than the characteris-

tic vertical height of the flowing material. This leads to the well-known 
shallow-water or Saint-Venant models, originally derived in the Newto-

nian context and subject to a vast amount of literature. The derivation of 
shallow-water models based on non-Newtonian constitutive laws is also 
very active. Some Saint-Venant type models for Herschel-Bulkley fluids 
are found in [41,30,1]. Lubrication models were introduced before the 
shallow-water models and were heavily used in practical simulations 
(see [44,39,8,9]). We also refer the reader to the reviews [2,48,46]. 
The comparisons between these two approaches will be discussed fur-

ther in the following of the article. Some other approaches to derive 
shallow-water models for other non-Newtonian fluids, namely granular 
flows, can be seen in [5,45].

One of the key points in deriving these 2D reduced model is the de-

scription of the vertical velocity profiles. Indeed, it is often necessary 
to postulate a certain form (constant, power law, etc.) of this profile 
in order to perform the derivation of the asymptotic. One way of han-

dling more general velocity profiles while keeping the numerical cost 
reasonable is to use the numerical multilayer approaches as initially 
derived in [6] for Navier-Stokes equations under the assumption of a 
hydrostatic pressure. In [29] a multilayer system is derived, whose so-

lution is a particular weak solution of the Navier-Stokes system with 
a piecewise constant vertical profile of the horizontal velocity. Taking 
into account the normal jump conditions and the incompressibility con-

dition the vertical velocity is deduced, being a piecewise linear profile. 
A generalization of the multilayer model with the 𝜇(𝐼)-rheology was in-

troduced in [27,28]. This model was able to approximate changes in 
the typology of vertical profiles of the velocity, without prescribing it, 
as well as to approximate the static/flowing interface characterizing 
these flows. Similar results are expected when applying the multilayer 
100
approach to other viscoplastic fluids. In particular, it should be possible 
to approximate the yield surface characterizing Herschel-Bulkley fluids.

Another difficulty is the design of well-balanced numerical meth-

ods for depth-averaged and multilayer models. A well-balanced finite 
volume method combined with a duality technique is proposed in [1]

for a Saint-Venant Herschel-Bulkley type model. The particularity of 
this model is that it is written as a variational inequality. The duality 
technique, namely Augmented Lagrangian or Bermúdez-Moreno meth-

ods, allows to rewrite the system in terms of an optimization problem 
with constraints. The Lagrange multiplier associated to the optimiza-

tion problem is used in the finite volume step to obtain a well-balanced 
method, preserving non-trivial stationary solutions. The main drawback 
of this technique is that it is necessary to solve a fixed point problem at 
each time step. Then, an iterative algorithm is considered. A different 
alternative, although it is less accurate, is the use of a regularization of 
the stress tensor (see [36,11,43]). In [27] a well-balanced approxima-

tion of multilayer model is proposed, with a regularization of the stress 
tensor for the 𝜇(𝐼)-rheology. Note that considering a multilayer model 
as a variational inequality would lead to solve a more complex opti-

mization problem than for shallow one-layer models, then increasing 
the computational cost.

In this paper, we first focus on the deduction of a multilayer ap-

proach for Herschel-Bulkley fluids (see equation (3)). Note that Bing-

ham model can be seen as a particular case of Herschel-Bulkley model. 
A regularization of the stress tensor is also considered. Two multilayer 
models are introduced, one of them including the normal stress contri-

butions thanks to a particular asymptotic hypothesis in the pseudoplug 
layer. A well-balanced discretization of the multilayer model is then 
proposed. In the numerical tests a systematic comparison with Shal-

low Water type and lubrication models is presented. The ability of the 
model to capture different velocity profiles and the interface between 
sheared/(pseudo-)plug are also analyzed. Moreover, relevant results 
concerning the pseudoplug layer are recovered. For instance, the change 
of the convexity of the yield surface near the front when considering the 
normal stress contributions and parabolic vertical profile of the velocity 
there.

The paper is organized as follows. In the next section, the starting 
3D governing equations for viscoplastic material are introduced. These 
equations have a structure of the Navier-Stokes’ type but are extended 
to take into account the ability of the material to be either fluid or rigid, 
as sketched previously. In section 3, the derivation of the multilayer 
Herschel-Bulkley models (with and without normal stress contributions) 
and some relevant associated steady states are presented. Section 4 is 
dedicated to the design of a well-balanced finite volume discretization 
of previous model. Care is devoted to preserve aforementioned station-

ary states. Numerical tests are then presented in section 5. We begin by 
a study of the ability of the scheme to compute an analytical solution for 
a uniform flow and then to preserve a family of steady solutions with-

out or with wet/dry fronts. Then, we revisit and extend, thanks to this 
scheme, the 1D viscoplastic dam break problem as presented by Ancey 
and colleagues in [4,3]. This also leads to a comparative analysis with 
the results of lubrication models. Interesting outcomes are presented on 
the ability of the simulations to reproduce the sheared/(pseudo-)plug 
layers within the vertical.

2. Governing equations

For the sake of simplicity the two-dimensional case is only consid-

ered in the paper. Note that this could entail a limitation in the case of 
narrow channels with a strong side walls friction, or in real applications 
on 3D domains. The incompressible Navier-Stokes system describing the 
dynamics of a fluid with velocity 𝒖 ∈ℝ2 and constant density 𝜌 ∈ℝ, to-

gether with an appropriate definition of the stress tensor accounting for 
the rheological behavior of the non-Newtonian fluid is considered. This 
system reads
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⎧⎪⎨⎪⎩
∇ ⋅ 𝒖 = 0,

𝜌𝜕𝑡𝒖 + 𝜌∇ ⋅ (𝒖⊗ 𝒖) − ∇ ⋅ 𝝈 = 𝜌 𝒈,

(3)

where 𝒈 is the gravity force. The total stress tensor is

𝝈 = −𝑝 + 𝝉 ,

with 𝑝 ∈ ℝ the pressure,  the 2D identity tensor and 𝝉 the deviatoric 
stress tensor, which is defined by the rheology. For Herschel-Bulkley 
viscoplastic fluids the strain-rate and deviatoric tensors are defined by 
(1) and (2), respectively.

Focusing on the first case in (2), when ‖𝐷(𝒖)‖ ≠ 0, this definition 
leads to

𝝉 = 𝜂𝐷(𝒖), with 𝜂 =
𝜏𝑦‖𝐷(𝒖)‖ + 2𝑛𝐾‖𝐷(𝒖)‖𝑛−1,

being 𝜂 ∈ ℝ the generalized viscosity coefficient, which depends on the 
velocity. Notice that it is not defined if the strain rate vanishes. In this 
case, 𝝉 is a multivalued tensor. In order to avoid this singularity, we 
consider a regularization technique (see [36,43]), and we finally obtain

𝜂 =
𝜏𝑦 + 2𝑛𝐾‖𝐷(𝒖)‖𝑛√‖𝐷(𝒖)‖2 + 𝛿20

, (4)

where 𝛿0 is the regularization parameter. Note that 𝛿0 must be consid-

ered small enough, in such a way that the regularization error does not 
dominate over the space discretization error (see [42]). As mentioned 
in the introduction, a different alternative would be using a duality 
method such as Augmented Lagrangian [31] of Bermúdez-Moreno [12]

methods. These methods were considered in [25,26] for shallow Bing-

ham fluids in the 1D and 2D cases. On the one hand, the main advantage 
of the regularization method, with respect to these duality methods, is 
its lower computational effort. On the other hand, its main disadvan-

tage is that it is not possible to truly recover the unyielded zones or to 
detect precisely the yield surfaces. In practice, we recover ‖𝐷(𝒖)‖ ∼ 𝛿0
and some tolerance of the order of 𝛿0 must be used to compute the 
yielded/unyielded interface, as it will be commented in the numerical 
tests (see section 5).

In the next section, the final model is derived as a combination of 
two ingredients: a dimensional analysis and a depth-integrated proce-

dure in the framework of the multilayer (also called layer-averaged) 
approach.

3. Derivation of the model

First, we set the coordinate system. A tilted coordinate system (𝑥, 𝑧)
is considered, with 𝑥 ∈ [𝑥0, 𝑥𝑒𝑛𝑑 ] and 𝑧 ∈ ℝ, over a reference plane 𝑏̂(𝑥)
with a constant slope 𝜃 > 0. We adopt the geophysical convention that 
considers negative slopes for 𝜃 > 0 (see Fig. 1), then we define 𝑏̂(𝑥) =
(𝑥𝑒𝑛𝑑 − 𝑥) tan𝜃. In addition, 𝑏(𝑥) denotes a local bottom, measured in 
the normal direction to the reference plane 𝑏̂(𝑥). The velocity vector is 
𝒖 = (𝑢, 𝑤), where 𝑢, 𝑤 are its downslope and normal components, and 
∇ =

(
𝜕𝑥, 𝜕𝑧

)
is the usual differential operator.

Then, system (3) reads

⎧⎪⎪⎨⎪⎪⎩

𝜕𝑥𝑢+ 𝜕𝑧𝑤 = 0,

𝜌
(
𝜕𝑡𝑢+ 𝑢𝜕𝑥𝑢+𝑤𝜕𝑧𝑢

)
+ 𝜕𝑥𝑝 = 𝜌𝑔 sin𝜃 + 𝜕𝑥𝜏𝑥𝑥 + 𝜕𝑧𝜏𝑥𝑧,

𝜌
(
𝜕𝑡𝑤+ 𝑢𝜕𝑥𝑤+𝑤𝜕𝑧𝑤

)
+ 𝜕𝑧𝑝 = −𝜌𝑔 cos 𝜃 + 𝜕𝑥𝜏𝑧𝑥 + 𝜕𝑧𝜏𝑧𝑧,

(5)

where 𝜏𝑥𝑥, 𝜏𝑥𝑧, 𝜏𝑧𝑥, 𝜏𝑧𝑧 denote the components of the deviatoric tensor 𝝉 .

Concerning the boundary conditions, the usual kinematic and non-

penetration conditions at the free surface and the bottom, respectively, 
are used
101
Fig. 1. Sketch of the multilayer configuration and notation.

𝜕𝑡 (𝑏+ ℎ) + 𝑢|𝑧=𝑏+ℎ 𝜕𝑥 (𝑏+ ℎ) =𝑤|𝑧=𝑏+ℎ , and 𝑢|𝑧=𝑏 𝜕𝑥𝑏 =𝑤|𝑧=𝑏 .
We also consider that there is no surface tension at the free surface

𝝈 𝒏𝑆 = 0, (6)

being 𝒏𝑆 the normal vector at the free surface. At the bottom, a friction 
condition is assumed

𝝈 𝒏𝑏 −
((
𝝈 𝒏𝑏

)
⋅ 𝒏𝑏
)
𝒏𝑏 =

⎛⎜⎜⎝𝜏𝑏
𝑢|𝑏|||𝑢|𝑏 ||| , 0

⎞⎟⎟⎠
′

, (7)

being 𝒏𝑏 the downward normal vector at the bottom, and 𝜏𝑏 (𝑃𝑎) the 
friction stress, that is not necessarily constant. In this friction condi-

tion it appears the sign of the velocity at the bottom for the sake of 
generality, which is a difference with respect to other previous works 
(see e.g. [22,3]), where it is always assumed a positive velocity, i.e., 
𝑠𝑖𝑔𝑛(𝑢) = 𝑢∕|𝑢| = 1 constant. Let us also remark that a no-slip condition 
(𝒖 = 0 at the bottom) could also be imposed in a weak sense, following 
the approach introduced in [28].

3.1. Dimensional analysis

The usual shallowness parameter 𝜀 =𝐻∕𝐿, the ratio of the charac-

teristic height and length of the domain, is considered and the dimen-

sional analysis in [30,19] is assumed (tilde symbols (.̃) denote dimen-

sionless variables):

(𝑥, 𝑧, 𝑡) = (𝐿𝑥,𝐻𝑧, (𝐿∕𝑈 )̃𝑡), ℎ =𝐻ℎ̃, 𝜌 = 𝜌0𝜌,

(𝑢,𝑤) = (𝑈𝑢̃, 𝜀𝑈𝑤̃), 𝑝 = 𝜌0𝑔 cos𝜃𝐻𝑝,

and

𝐷(𝒖) = 𝑈

𝐻

1
2

⎛⎜⎜⎝
2𝜀𝜕𝑥𝑢̃ 𝜕𝑧𝑢̃+ 𝜀2𝜕𝑥𝑤̃

𝜕𝑧𝑢̃+ 𝜀2𝜕𝑥𝑤̃ 2𝜀𝜕𝑧𝑤̃

⎞⎟⎟⎠ .
It leads to

𝜂 =𝐾
(
𝑈

𝐻

)𝑛−1
𝜂 with 𝜂 = HB‖𝐷(𝒖)‖ + 2𝑛‖𝐷(𝒖)‖𝑛−1,

where HB = 𝜏𝑦𝐻
𝑛∕(𝐾𝑈𝑛) is the Herschel-Bulkley number. We recall that 

𝜏𝑦 and 𝐾 have dimensions 𝑃𝑎 and 𝑃𝑎 𝑠𝑛 respectively. Note that previous 
hypotheses are equivalent to consider(
𝜏𝑥𝑥, 𝜏𝑥𝑧, 𝜏𝑧𝑧

)
=𝐾

(
𝑈

𝐻

)𝑛 (
𝜀𝜏𝑥𝑥, 𝜏𝑥𝑧, 𝜀𝜏𝑧𝑧

)
,

where

𝜏𝑥𝑥 = 𝜂𝜕𝑥𝑢̃, 𝜏𝑥𝑧 =
𝜂

2
(
𝜕𝑧𝑢̃+ 𝜀2𝜕𝑥𝑤̃

)
, 𝜏𝑧𝑧 = 𝜂𝜕𝑧𝑤̃.

As mentioned earlier, the two regimes in the definition of the de-

viatoric stress tensor (2) result in a lower sheared layer and an upper 



E.D. Fernández-Nieto, J. Garres-Díaz and P. Vigneaux Computers and Mathematics with Applications 139 (2023) 99–117
non-sheared (or plug) layer in the flow. It should be mentioned that 
these assumptions hold in the lower sheared layer, where the strain-rate 
is (1). However, in transient non-uniform flows, a pseudoplug layer 
appears instead of a true plug layer (see [8]). Moreover, the strain-rate 
becomes  (𝜀) in this pseudoplug layer. A more appropriate scaling can 
then be considered using the following hypothesis:

𝜏𝑥𝑧 =𝐾
(
𝑈

𝐻

)𝑛
𝜀𝜒 𝜏𝑥𝑧, and 𝜏𝑥𝑧 =

𝜂

2
(
𝜕𝑧𝑢̃+ 𝜀2𝜕𝑥𝑤̃

)
,

with 𝜒 = 1 in the pseudoplug layer and 𝜒 = 0 otherwise.

Defining now the non-dimensional Reynolds and Froude numbers

𝑅𝑒 =
𝜌0𝑈

2−𝑛𝐻𝑛

𝐾
, 𝐹 𝑟 = 𝑈√

𝑔𝐻 cos𝜃
,

the non-dimensional Navier-Stokes system is written as (tildes have 
been dropped for simplicity)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜕𝑥𝑢+ 𝜕𝑧𝑤 = 0,

𝜕𝑡𝑢+ 𝑢𝜕𝑥𝑢+𝑤𝜕𝑧𝑢+
1

𝐹𝑟2
𝜕𝑥𝑝

= 1
𝜀

1
𝐹𝑟2

tan 𝜃 + 1
𝑅𝑒

(
𝜀𝜕𝑥𝜏𝑥𝑥 +

1
𝜀(1−𝜒)

𝜕𝑧𝜏𝑥𝑧

)
,

𝜀2
(
𝜕𝑡𝑤+ 𝑢𝜕𝑥𝑤+𝑤𝜕𝑧𝑤

)
+ 1

𝐹𝑟2
𝜕𝑧𝑝

= − 1
𝐹𝑟2

+ 1
𝑅𝑒

(
𝜀(1+𝜒)𝜕𝑥𝜏𝑧𝑥 + 𝜀𝜕𝑧𝜏𝑧𝑧

)
.

In practice, we consider two different models. The first is the leading 
order model up to  (𝜀), which cannot reproduce the pseudoplug layer 
but a plug layer. In that case, we start from the first order system

⎧⎪⎪⎨⎪⎪⎩

𝜕𝑥𝑢+ 𝜕𝑧𝑤 = 0,

𝜕𝑡𝑢+ 𝑢𝜕𝑥𝑢+𝑤𝜕𝑧𝑢+
1

𝐹𝑟2
𝜕𝑥𝑝 =

1
𝜀

1
𝐹𝑟2

tan 𝜃 + 1
𝜀𝑅𝑒

𝜕𝑧

( 𝜂
2
𝜕𝑧𝑢
)
,

𝜕𝑧𝑝 = −1,

(8a)

where we consider the leading order approximation ‖𝐷(𝒖)‖ ≈ ||𝜕𝑧𝑢||∕2 in 
the viscosity definition (4), yielding to

𝜂 =
𝜏𝑦 +𝐾 ||𝜕𝑧𝑢||𝑛√||𝜕𝑧𝑢||2 ∕4 + 𝛿20

. (8b)

In order to obtain a model reproducing the pseudoplug layer, it is 
necessary to consider the model up to (𝜀2), where normal stress con-

tributions 
(
𝜏𝑥𝑥, 𝜏𝑧𝑧

)
are included [8,30,19]. It can be achieved by con-

sidering the model up to  
(
𝜀2
)

in both layers. However, notice that 
in the sheared layer there is no reason to neglect the term 𝜀(1+𝜒)𝜕𝑥𝜏𝑧𝑥, 
where 𝜒 = 0, which leads to a very complicated model with third order 
derivatives. Then, we shall consider an intermediate model including 
just the normal stress contributions within each layer, which satisfies a 
dissipative energy balance. This model can be seen as a second order 
perturbation of model (8) in the sheared layer, allowing us to recover 
the pseudoplug layer. In this case, the starting point is the first order 
system

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜕𝑥𝑢+ 𝜕𝑧𝑤 = 0,

𝜕𝑡𝑢+ 𝑢𝜕𝑥𝑢+𝑤𝜕𝑧𝑢+
1

𝐹𝑟2
𝜕𝑥𝑝

= 1
𝜀

1
𝐹𝑟2

tan 𝜃 + 𝜀

𝑅𝑒
𝜕𝑥
(
𝜂𝜕𝑥𝑢

)
+ 1

𝜀(1−𝜒)𝑅𝑒
𝜕𝑧

( 𝜂
2
𝜕𝑧𝑢
)
,

𝜕𝑧

(
𝑝+ 𝜀𝐹 𝑟2

𝑅𝑒
𝜂𝜕𝑥𝑢

)
= −1,

(9a)

where we have used the divergence free condition in the vertical mo-

mentum equation. Concerning the strain-rate ‖𝐷‖, it reads, in non-

dimensional form,

‖𝐷‖ =√0.5𝐷 ∶𝐷
102
= 1
2

√
𝜀2𝜒
((

𝜕𝑧𝑢
)2 + 2𝜀2𝜕𝑥𝑤𝜕𝑧𝑢+ 𝜀4

(
𝜕𝑥𝑤
)2)+ 4𝜀2

(
𝜕𝑥𝑢
)2
.

Then, we consider here the enhanced first order approximation

‖𝐷𝜀‖ = 1
2

√
𝜀2𝜒
(
𝜕𝑧𝑢
)2 + 4𝜀2

(
𝜕𝑥𝑢
)2
. (9b)

Note that this approximation follows the same idea of considering only 
those first order terms from the normal stress contributions. So, the 
viscosity coefficient is defined by

𝜂 =
𝜏𝑦 + 2𝑛𝐾‖𝐷𝜀‖𝑛√‖𝐷𝜀‖2 + 𝛿2

. (9c)

In the following, the multilayer approach is applied to systems (8)

and (9) to obtain the hydrostatic Multilayer Herschel-Bulkley models up 
to first and second order in the shallowness parameter 𝜀, respectively.

3.2. Multilayer Herschel-Bulkley models

Let us briefly recall the multilayer notations (see Fig. 1). Following 
[29] the domain Ω is split into 𝑁 vertical layers Ω𝛼 , for 𝛼 = 1, … , 𝑁 . We 
denote by 𝑧𝛼+1∕2 the interface between layers Ω𝛼 and Ω𝛼+1, and then

Ω𝛼 = {(𝑥, 𝑧) ∈ [𝑥0, 𝑥𝑒𝑛𝑑 ] ×ℝ+ ∕ 𝑧𝛼−1∕2 < 𝑧 < 𝑧𝛼+1∕2}.

Note that 𝑧1∕2 and 𝑧𝑁+1∕2 are the bottom and free surface levels, re-

spectively. We shall remark that they are virtual layers without a phys-

ical meaning, contrary to the stratified flows approach. Considering 
ℎ𝛼 = 𝑧𝛼+1∕2 − 𝑧𝛼−1∕2 the height of the layer Ω𝛼 , and therefore ℎ =∑𝛼 ℎ𝛼

is the total height, the vertical mesh is defined by the positive coeffi-

cients 𝑙𝛼 > 0 satisfying

ℎ𝛼 = 𝑙𝛼ℎ, and

𝑁∑
𝛼=1

𝑙𝛼 = 1.

In addition, given an arbitrary function 𝑓 we define

𝑓−
𝛼+1∕2 = lim

𝑧→𝑧𝛼+1∕2
𝑧<𝑧𝛼+1∕2

𝑓|Ω𝛼
, 𝑓+

𝛼+1∕2 = lim
𝑧→𝑧𝛼+1∕2
𝑧>𝑧𝛼+1∕2

𝑓|Ω𝛼+1
,

the lower and upper limits of 𝑓 at the interface given by 𝑧𝛼+1∕2. In the 
case of a continuous function 𝑓 , we simply denote by 𝑓𝛼+1∕2 its approx-

imation at the interface. We also denote by 𝑢𝛼 the averaged velocity in 
the layer Ω𝛼

𝑢𝛼 =
1
ℎ𝛼

𝑧𝛼+1∕2

∫
𝑧𝛼−1∕2

𝑢(𝑡, 𝑥, 𝑧)𝑑𝑧.

Thus, the multilayer approach leads to a piecewise constant pro-

file of velocity, which may be discontinuous at the interfaces 𝑧𝛼+1∕2. In 
order to approximate the viscosity and the components of 𝝉 at the inter-

faces, appropriate definitions of the deviatoric stress tensor components 
at the interfaces are introduced, based on the normal jump condition for 
the mass and momentum equations (see [27] for details).

It is also necessary to define 𝐻 ,𝛼+1∕2
, an approximation of 𝜕𝑧𝑢 at 

the interface 𝑧𝛼+1∕2. In particular, we set

𝐻 ,𝛼+1∕2 =
𝑢𝛼+1 − 𝑢𝛼
ℎ𝛼+1∕2

, for 𝛼 = 1,… ,𝑁 − 1,

with ℎ𝛼+1∕2 =
(
ℎ𝛼 + ℎ𝛼+1

)
∕2.

3.2.1. First order multilayer model
Following a layer-averaging procedure of system (8) as in [27] (see 

their Appendix A), the final multilayer model up to first order reads (in 
original variables)
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⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑙𝛼

(
𝜕𝑡ℎ+ 𝜕𝑥(ℎ𝑢𝛼)

)
=𝐺𝛼+1∕2 −𝐺𝛼−1∕2,

𝑙𝛼

(
𝜕𝑡
(
ℎ𝑢𝛼
)
+ 𝜕𝑥

(
ℎ𝑢2𝛼
)
+ 𝑔 cos𝜃 ℎ𝜕𝑥

(
𝑧𝑏 + ℎ

))
= 1

𝜌

(
𝐾𝛼−1∕2 −𝐾𝛼+1∕2

)
+ 1
2
𝐺𝛼+1∕2

(
𝑢𝛼+1 + 𝑢𝛼

)
− 1

2
𝐺𝛼−1∕2

(
𝑢𝛼 + 𝑢𝛼−1

)
,

(10)

where 𝑧𝑏 = 𝑏 + 𝑏̂ is the bottom topography. The term 𝐺𝛼+1∕2 is the mass 
transference between the layers Ω𝛼 and Ω𝛼+1, which by combining mass 
equations in previous system can be written as

𝐺𝛼+1∕2 =
𝛼∑

𝛽=1
𝑙𝛽𝜕𝑥

(
ℎ𝑢𝛽 − 𝑢̄

)
, where 𝑢̄ =

𝑁∑
𝛾=1

𝑙𝛾 𝑢𝛾 . (11)

Finally, the viscous term 𝐾
𝛼+ 1

2
is defined by

𝐾𝛼+1∕2 = −1
2
𝜂𝛼+1∕2𝐻 ,𝛼+1∕2, 𝛼 = 1,… ,𝑁 − 1, (12)

where the viscosity coefficient at the interface 𝑧𝛼+1∕2 is given by

1
2
𝜂
𝛼+ 1

2
=

𝜏𝑦 +𝐾
||||𝐻 ,𝛼+1∕2

||||𝑛√||||𝐻 ,𝛼+1∕2

||||2 + 𝛿2

, (13)

with 𝛿 = 2𝛿0.

The terms 𝐾1∕2 and 𝐾𝑁+1∕2 are defined by the boundary conditions 
at the bottom and the free surface, respectively. Using the boundary 
condition (6) we set 𝐾𝑁+1∕2 = 0. In order to impose the friction condi-

tion (7), we use that 𝑠𝑖𝑔𝑛(𝑢1) = 𝑠𝑖𝑔𝑛(𝐻 ,1∕2
) = 𝐻 ,1∕2

∕
√

𝐻
2
,1∕2

+ 𝛿2, 

where the denominator in the sign function has been regularized, and 
the following definition is considered:

𝐾1∕2 = −1
2
𝜂1∕2𝐻 ,1∕2, with

1
2
𝜂1∕2 =

𝜏𝑏√||||𝐻 ,1∕2

||||2 + 𝛿2

, (14)

where we recall that 𝜏𝑏 is the friction coefficient. For a general friction 
law, which is compatible with the rheology, we can consider 𝜏𝑏 defined 
by

𝜏𝑏 = 𝜏𝑦 +𝐾𝑏
|||𝐻 ,1∕2

|||𝑛 , (15)

being 𝐾𝑏 a calibrated coefficient, which may be variable. The goal 
of considering this general coefficient is the fact that the coefficients 
defining the friction law can be different from those defining the vis-

cosity/consistency. This coefficient should be calibrated, very often by 
means of laboratory experiments. For instance, the Coussot’s closure 
[22,3] is defined by

𝜏𝑏 = 𝜏𝑦
(
1 + 1.93𝐺3∕10) , with 𝐺 =

(
𝐾

𝜏𝑦

)3 |||𝐻 ,1∕2
||| , (16)

which is an experimental formula calibrated for shallow flows and for 
a kaolin fluid, where 𝑛 = 0.3. This definition of 𝜏𝑏 coincides with (15) in 
the case 𝑛 = 0.3 when setting 𝐾𝑏 = 1.93𝐾

(
𝜏𝑦∕𝐾

)1∕10
.

In the numerical experiments, we will use a value 𝑛 = 0.33 ≈ 1∕3. 
Note that, if we replace 0.3 by 𝑛 = 1∕3 in (16), we obtain 𝜏𝑏 given by 
(15) with 𝐾𝑏 = 1.93𝐾 , that is,

𝜏𝑏 = 𝜏𝑦 + 1.93𝐾 |||𝐻 ,1∕2
|||𝑛 . (17)

In previous expressions for friction conditions, we define 𝐻 ,1∕2
=

𝑢1∕ℎ1. Alternatively, we can also consider a no-slip condition, where 
in this case
103
𝜏𝑏 = 𝜏𝑦 +𝐾
|||𝐻 ,1∕2

|||𝑛 , with 𝐻 ,1∕2 =
2𝑢1
ℎ1

. (18)

The factor 2 in previous equation is a consequence of the strategy 
followed in [28] to weakly impose friction or no-slip boundary con-

ditions. This strategy is based on a ghost cell technique (see its Sub-

section 2.1.2 and its Fig. 7). Concretely, it consists in approximating 
𝐻 ,1∕2

= (𝑢1 − 𝑢0)∕ℎ1 where 𝑢0 is a virtual velocity that takes the value 
𝑢0 = −𝑢1 (no slip) or 𝑢0 = 0 (friction). Then, the following definition is 
considered

𝐻 ,1∕2 =
𝜆𝑢1
ℎ1

where

{
𝜆 = 2 if no-slip,

𝜆 = 1 if friction.
(19)

These friction or no-slip conditions will be used in the numerical 
tests of subsection 5.3.

Concerning the energy balance of the resulting model, it is easy to 
see that the following result holds:

Theorem 1. Defining the energy of the layer Ω𝛼 as

𝐸𝛼 = ℎ𝛼

(||𝑢𝛼||2
2

+ 𝑔 cos𝜃
(
𝑧𝑏 +

ℎ

2

))
, (20a)

for 𝛼 = 1, … , 𝑁 , system (10) satisfies the dissipative energy balance

𝜌𝜕𝑡

(
𝑁∑
𝛼=1

𝐸𝛼

)
+ 𝜌𝜕𝑥

[
𝑁∑
𝛼=1

𝑢𝛼

(
𝐸𝛼 + 𝑔 cos𝜃 ℎ𝛼

ℎ

2

)]
≤ −

𝜂1∕2

2
𝜆𝑢21
ℎ1

−
𝑁−1∑
𝛼=1

𝜂
𝛼+ 1

2

2

(
𝑢𝛼+1 − 𝑢𝛼

)2
ℎ
𝛼+ 1

2

,

(20b)

where 𝜆 = {1, 2} depending on the friction condition (19).

3.2.2. Second order multilayer model with pseudoplug
We remark that considering all the (𝜀) terms over the whole do-

main leads to a very complex model, involving third order spatial 
derivatives (see [16]). The treatment of such a resulting system, as 
well as the inclusion of non-hydrostatic effects, would be interesting, 
although it is beyond the scope of this paper.

In order to show here the ability of the multilayer approach to re-

cover this pseudoplug layer in non-uniform flows, we discretize system 
(9), which includes the normal stress contributions, in the multilayer 
framework. Thus, the following system is obtained:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑙𝛼

(
𝜕𝑡ℎ+ 𝜕𝑥(ℎ𝑢𝛼)

)
=𝐺𝛼+1∕2 −𝐺𝛼−1∕2,

𝑙𝛼

(
𝜕𝑡
(
ℎ𝑢𝛼
)
+ 𝜕𝑥

(
ℎ𝑢2𝛼
)
+ 𝑔 cos𝜃 ℎ𝜕𝑥

(
𝑧𝑏 + ℎ

))
= 1

𝜌
𝑙𝛼𝜕𝑥

(
2ℎ𝜂𝛼𝜕𝑥𝑢𝛼

)
+1
𝜌

(
𝐾𝛼−1∕2 −𝐾𝛼+1∕2

)
+ 1

2
𝐺𝛼+1∕2

(
𝑢𝛼+1 + 𝑢𝛼

)
− 1

2
𝐺𝛼−1∕2

(
𝑢𝛼 + 𝑢𝛼−1

)
,

(21)

where 𝐺𝛼+1∕2 and 𝐾𝛼+1∕2 are given by (11) and (12), respectively. Note 
that in this case definitions of the viscosity at the midpoint of each 
layer and at the interfaces are needed, which basically depend on the 
definition of ‖𝐷𝜀‖ (9b). So, the viscosity coefficients are defined by

𝜂𝛼 =
𝜏𝑦 + 2𝑛𝐾‖𝐷𝜀,𝛼‖𝑛√‖𝐷𝜀,𝛼‖2 + 𝛿2

, and 𝜂
𝛼+ 1

2
=

𝜏𝑦 + 2𝑛𝐾‖𝐷𝜀,𝛼+1∕2‖𝑛√‖𝐷𝜀,𝛼+1∕2‖2 + 𝛿2
.

Finally, the boundary condition 𝐾1∕2 is defined as in (14) where

𝜂1∕2 =
𝜏𝑏√‖𝐷𝜀,1∕2‖2 + 𝛿2

,

and 𝜏𝑏 defined as in previous subsection, where ‖𝐷𝜀,1∕2‖ instead of |||𝐻 ,1∕2

||| must be considered.
| |
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Concerning the energy balance satisfied by this model, it reads

𝜌𝜕𝑡

(
𝑁∑
𝛼=1

𝐸𝛼

)
+ 𝜕𝑥

[
𝑁∑
𝛼=1

𝑢𝛼

(
𝜌𝐸𝛼 + 𝜌𝑔 cos𝜃 ℎ𝛼

ℎ

2
− 2ℎ𝛼𝜂𝛼𝜕𝑥𝑢𝛼

)]

≤ −
𝜂1∕2

2
𝜆𝑢21
ℎ1

−
𝑁∑
𝛼=1

2ℎ𝛼𝜂𝛼
(
𝜕𝑥𝑢𝛼

)2 − 𝑁−1∑
𝛼=1

𝜂
𝛼+ 1

2

2

(
𝑢𝛼+1 − 𝑢𝛼

)2
ℎ
𝛼+ 1

2

,

where 𝐸𝛼 is given by (20a). In order to obtain such an energy bal-

ance for this model, it is essential to consider 𝐾𝛼+1∕2 defined by (12), 
although other terms of order (𝜀) are neglected here.

Model (21) will be considered in the numerical tests’ section to illus-

trate the ability of the multilayer approach to reproduce the pseudoplug 
layer in non-uniform flows.

3.3. Steady states at rest

Let us analyze now the steady solutions of system (10). Concretely, 
we focus here on those steady states at rest, that is, with 𝑢𝛼 = 0 for 
𝛼 = 1, … , 𝑁 . Actually, they are also steady-at-rest states for system (21). 
In this case, we obtain

𝑙𝛼𝜌𝑔ℎ cos𝜃
|||𝜕𝑥 (𝑧𝑏 + ℎ

)||| =𝐾𝛼−1∕2 −𝐾𝛼+1∕2.

Summing up previous expression for 𝛼 = 1, … , 𝑁 , and using boundary 
conditions (𝐾𝑁+1∕2 = 0) we have

𝜌𝑔ℎ cos𝜃 |||𝜕𝑥 (𝑧𝑏 + ℎ
)||| =𝐾1∕2 ≤ 𝜏𝑦,

where last inequality comes from the definition of the stress tensor (2)

and the fact that 𝐾1∕2 approximates 𝜏𝑥𝑧|𝑏 in the multilayer framework. 
Therefore, the steady solutions we are interested in, are those verifying

𝑢𝛼 = 0 for 𝛼 = 1,… ,𝑁, and 𝜌𝑔ℎ cos𝜃 |||𝜕𝑥 (𝑧𝑏 + ℎ
)||| ≤ 𝜏𝑦. (22)

Note that they are also a family of steady states for the one-layer 
shallow model and not only in the multilayer case.

Let us consider now some particular cases that we will deal with 
in the numerical tests. Let us simplify by assuming a flat local bottom 
𝜕𝑥𝑏 = 0.

First, we consider a uniform flow 𝜕𝑥(𝑧𝑏 + ℎ) = − tan𝜃 (and therefore 
𝜕𝑥ℎ = 0), then condition (22) reads

ℎ ≤ 𝜏𝑦

𝜌𝑔 sin𝜃
.

It is essential to notice the dependence on ℎ in previous inequality, 
which is a difference from steady states for other materials, such as 
granular flows (see e.g. [35]). It induces that for fixed slope and rheo-

logical properties, the material flows or not depending on the thickness 
of the uniform layer.

Second, in the case where 𝜕𝑥ℎ ≠ 0 but the local bottom 𝑏 remains 
constant (𝜕𝑥𝑏 = 0), we obtain the family of steady states at rest given by

ℎ ||−tan𝜃 + 𝜕𝑥ℎ
|| ≤ 𝜏𝑦

𝜌𝑔 cos𝜃
. (23)

Actually, in the limit case, the solution of the initial value problem

⎧⎪⎨⎪⎩
ℎ ||−tan𝜃 + 𝜕𝑥ℎ

|| = 𝜏𝑦

𝜌𝑔 cos𝜃
,

ℎ(𝑥0) = ℎ0,

where we recall that 𝑥0 is the left boundary of the domain, is a steady 
state. Assuming 

(
−tan𝜃 + 𝜕𝑥ℎ

)
< 0, this solution takes the form

ℎ(𝑥) =

{ 𝛾

𝜅

(
1 + 𝛾

𝜅
𝑊0 (𝑧)

)
if − 𝑒−1 < 𝑧 < 0,

0 otherwise,

where 𝑧 = −1
𝛾

𝑒
𝜅2(𝜁−𝑥)

𝛾
−1
, (24a)
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with 𝑊0(𝑧) the main branch of the Lambert’s 𝑊 -function and

𝛾 =
−𝜏𝑦

𝜌𝑔 cos𝜃
, 𝜅 = −tan𝜃, and 𝜁 = 𝛾

𝜅2

(
1 + log

((
𝛾 − 𝜅ℎ0

)
𝑒𝜅ℎ0∕𝛾−1

))
.

(24b)

4. A well-balanced numerical discretization

We focus here on the discretization of system (10). If the system 
(21) is considered, only the last step of the scheme should be modified 
accordingly (see Remark 1).

First, note that system (10) cannot be written as a hyperbolic sys-

tem of conservation laws, in particular because of the viscous terms 
𝐾𝛼+1∕2 in the momentum equations. Moreover, the mass transference 
terms lead to non-conservative products. Therefore, multilayer models 
are usually discretized by a splitting approach where a finite volume 
method is considered in a first step, whereas viscous contributions are 
discretized semi-implicitly in a second stage for stability reasons (see 
[6,29] among others).

The numerical scheme employed here is very similar to the one 
in [28] for a multilayer system for dry granular flows. Before giving 
details, let us summarize the key-points to obtain a well-balanced dis-

cretization, which is the main goal. Actually, the scheme is designed 
to preserve the steady solutions (22) in which we are interested in. It 
is achieved as a result of the combination of both steps in the split-

ting procedure. First, a hydrostatic reconstruction based on the friction 
term is considered to make the numerical diffusion vanishing when the 
steady state condition is satisfied, making possible to obtain 𝜕𝑡ℎ = 0 in 
such cases. The second step is linked to the fact that one wants the 
scheme to produce a vanishing velocity when converging to the steady 
states at rest. However, by the structure of the problem, the linear sys-

tem associated to the velocities (see (28) below) at steady states is such 
that it naturally leads to obtain very small values of the velocities. In-

deed, remark that the coefficients of the system’s matrix are of order 
𝛿−1 at cells where the strain rate is of order 𝛿. We remark that we can-

not obtain zero velocity because of the regularization technique, but a 
residual velocity that depends on the regularization parameter 𝛿0, as 
will be analyzed in subsection 5.2.

Let us define 𝒘 =
(
ℎ, 𝑞1, 𝑞2, ..., 𝑞𝑁

)′ ∈ ℝ𝑁+1 the vector of the conser-

vative variables, where 𝑞𝛼 = ℎ𝑢𝛼 is the discharge of the layer Ω𝛼 . Using 
this vector, system (10) can be rewritten in a compact form as

𝜕𝑡𝒘+ 𝜕𝑥𝑭 𝒄(𝒘) +𝑺(𝒘)𝜕𝑥
(
𝑧𝑏 + ℎ

)
+𝑩(𝒘)𝜕𝑥𝒘 =𝑬(𝒘), (25)

where 𝑭 𝒄 , 𝑺 ∈ ℝ𝑁+1 represent convective and pressure terms, respec-

tively, and whose components, for 𝑗 = 0, 1, … , 𝑁 , are

𝐹𝑐,𝑗 =

⎧⎪⎪⎨⎪⎪⎩

𝑁∑
𝛽=1

𝑙𝛽𝑞𝛽 , if 𝑗 = 0,

𝑞2𝑗

ℎ
, otherwise,

𝑆𝑗 =

{
0, if 𝑗 = 0,

𝑔ℎ cos𝜃, otherwise.

The matrix 𝑩 =
(
𝑏𝑗𝑘
)
∈𝑁+1(ℝ) contains all the non-conservative con-

tributions, i.e., the terms coming from the mass transference terms. 
Concretely, it is defined by

𝑏𝑗𝑘 =
⎧⎪⎨⎪⎩
0, if 𝑗 𝑘 = 0,

1
2ℎ𝑙𝑗

(
𝑞𝑗 + 𝑞𝑗−1

)
𝜉𝑗−1,𝑘 −

1
2ℎ𝑙𝑗

(
𝑞𝑗+1 + 𝑞𝑗

)
𝜉𝑗,𝑘, otherwise,

with

𝜉𝑗,𝑘 =
⎧⎪⎨⎪⎩
(
1 − (𝑙1 +⋯+ 𝑙𝑗 )

)
𝑙𝑘, if 𝑘 ≤ 𝑗,

−(𝑙1 +⋯+ 𝑙𝑗 )𝑙𝑘, otherwise,

for 𝑗, 𝑘 ∈ {1, … , 𝑁}. Finally, 𝑬 ∈ℝ𝑁+1 collects the viscous terms, with
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𝐸𝑗 =
⎧⎪⎨⎪⎩
0, if 𝑗 = 0,

1
𝜌𝑙𝑗

(
𝐾𝑗−1∕2 −𝐾𝑗+1∕2

)
, otherwise.

Once we have the model as a system of conservation laws with non-

conservative products and source terms, we move to the finite volume 
framework. We consider the usual uniform subdivision of the domain in 
control volumes 𝑉𝑖 = [𝑥𝑖−1∕2, 𝑥𝑖+1∕2], for 𝑖 ∈  (the set of ad hoc indices), 
where the constant mesh step is Δ𝑥. The center of each volume is de-

noted by 𝑥𝑖 =
(
𝑥𝑖−1∕2 + 𝑥𝑖+1∕2

)
∕2. Then, for a fixed time 𝑡𝑚, we denote 

the averaged conservative variable vector

𝒘𝑚
𝑖 = 1

Δ𝑥

𝑥𝑖+1∕2

∫
𝑥𝑖−1∕2

𝒘(𝑡𝑚, 𝑥)𝑑𝑥.

In the first step, the viscous contributions are removed, i.e. 𝑬 = 𝟎, 
and the discrete form of (25) in this case reads

𝒘
𝑚+1∕2
𝑖 =𝒘𝑚

𝑖 − Δ𝑡
Δ𝑥

(𝑚
𝑐,𝑖+1∕2 − 𝑚

𝑐,𝑖−1∕2

+ 1
2

(𝑚
𝑖+1∕2 +𝑚

𝑖−1∕2 + 𝑚
𝑖+1∕2 + 𝑚

𝑖−1∕2

))
,

being

𝑖+1∕2 =
1
2
(𝑩(𝒘𝑖+1) +𝑩(𝒘𝑖))

(
𝒘𝑖+1 −𝒘𝑖

)
, and

𝑖+1∕2 =
1
2
(𝑺(𝒘𝑖+1) +𝑺(𝒘𝑖))Δ𝜑𝑖+1∕2,

where Δ𝜑𝑖+1∕2 is the free surface variation

Δ𝜑𝑖+1∕2 =
(
ℎ𝑖+1 + 𝑧𝑏,𝑖+1 −𝑍𝑀

)
+ −
(
ℎ𝑖 + 𝑧𝑏,𝑖 −𝑍𝑀

)
+ ,

with 𝑍𝑀 =max(𝑧𝑏,𝑖, 𝑧𝑏,𝑖+1) and (⋅)+ the positive part. Finally, the numer-

ical flux 𝑐,𝑖+1∕2 used for the convective terms, in general, is written 
as

𝑐,𝑖+1∕2 =
1
2
(
𝑭 𝒄(𝒘𝑖) + 𝑭 𝒄 (𝒘𝑖+1)

)
− 1

2
𝑖+1∕2,

being 𝑖+1∕2 the numerical diffusion, which actually determines the 
scheme. We used here a HLL-type approximated Riemann solver in the 
framework of the PVM schemes introduced in [18], where the numeri-

cal diffusion 𝑖+1∕2 is a polynomial evaluation of the Roe matrix.

A key point of the scheme is the definition of the numerical diffu-

sion to preserve the steady water-at-rest solutions described by (22), in 
particular those with 𝜕𝑥

(
𝑧𝑏 + ℎ

) ≠ 0. The result we look for is to can-

cel the numerical diffusion when we predict a state-at-rest at 𝑥𝑖+1∕2 at 
the next time step. To do so, we evaluate if the sum of the pressure 
and convective terms is lower than the friction force at the current time 
step. To this aim, a key point is the definition of 𝑓𝑖+1∕2 (27). It leads to 
ensure 𝜕𝑡ℎ = 0 and therefore the well-balanced property of the scheme. 
This will be shown numerically in subsection 5.2.

To this end, we consider the hydrostatic reconstruction with source 
term (see [15]) taking into account the friction term. So, denoting by 
𝑆𝐿 and 𝑆𝑅 the approximations of the minimum and maximum wave 
speeds with a baroclinic approximation (see [28]), we define

𝑖+1∕2 = 𝑎0
(
𝒘̂𝑖+1 − 𝒘̂𝑖

)
+ 𝑎1

(
𝑭 𝒄 (𝒘𝑖+1) − 𝑭 𝒄 (𝒘𝑖) +𝑖+1∕2

)
, (26)

with

𝑎0 =
𝑆𝑅|𝑆𝐿|−𝑆𝐿|𝑆𝑅|

𝑆𝑅 −𝑆𝐿

, 𝑎1 =
|𝑆𝑅|− |𝑆𝐿|
𝑆𝑅 −𝑆𝐿

,

and 𝒘̂𝑖, ̂𝒘𝑖+1 the reconstructed states. Notice that we have removed the 
pressure term in the first order contribution of 𝑖+1∕2 and therefore it 
slightly differs from a usual path-conservative scheme. The reason is 
that it is a more stable choice.

The reconstructed states 𝒘̂𝑖, ̂𝒘𝑖+1 are defined as 𝒘𝑖, 𝒘𝑖+1 except for 
the first components ℎ𝑖, ℎ𝑖+1, which are replaced by
105
ℎ𝑖+1∕2− = (ℎ𝑖 − (Δ𝑍𝑖+1∕2)+)+, ℎ𝑖+1∕2+ = (ℎ𝑖+1 − (−Δ𝑍𝑖+1∕2)+)+,

where

Δ𝑍𝑖+1∕2 = 𝑧𝑏,𝑖+1 − 𝑧𝑏,𝑖 +Δ𝑖+1∕2,
with Δ𝑖+1∕2 = 𝑓𝑖+1∕2Δ𝑥𝑖+1∕2∕(𝑔 cos𝜃) accounting for the well-balanced 
correction associated to the friction term (15) or (16). Concretely, we 
set

𝑓𝑖+1∕2 =
{

𝑈∗ if ℎ𝑖+1∕2|𝑈∗| ≤ 𝜏𝑏∕𝜌,
0 otherwise,

(27)

with

𝑈∗ =
𝑢1,𝑖+1∕2

Δ𝑡
−

𝑔 cos𝜃Δ𝜑𝑖+1∕2

Δ𝑥
,

and 𝑢1,𝑖+1∕2 =
(
𝑢𝑖 + 𝑢𝑖+1

)
∕2, ℎ𝑖+1∕2 =

(
ℎ𝑖 + ℎ𝑖+1

)
∕2. Note that 𝑈∗ is an 

estimation of the velocity after the first step of the scheme 𝑢𝑚+1∕2
𝑖+1∕2 . Then, 

in practice (27) makes the balance between convective/pressure and 
friction terms and defines ℎ𝑖+1∕2± to have ℎ𝑖+1∕2+ − ℎ𝑖+1∕2− = 0 in (26) if 
the steady state condition (22) holds at the discrete level at the interface 
𝑥𝑖+1∕2.

Once we have solved the hyperbolic system, obtaining the inter-

mediate state 𝒘𝑚+1∕2
𝑖 , 𝑖 ∈ , the viscous terms are discretized semi-

implicitly. From the definition of 𝑬, we trivially have ℎ𝑚+1
𝑖

= ℎ
𝑚+1∕2
𝑖

, 
and for the discharge we solve at each volume the 𝑁 ×𝑁 tridiagonal 
linear system

𝑞𝑚+1𝛼,𝑖 = 𝑞
𝑚+1∕2
𝛼,𝑖

+ Δ𝑡
𝜌 𝑙𝛼ℎ

𝑚+1
𝑖

⎛⎜⎜⎝
𝜂𝑚
𝛼+ 1

2

2

𝑞𝑚+1
𝛼+1,𝑖 − 𝑞𝑚+1𝛼,𝑖

𝑙
𝛼+ 1

2
ℎ𝑚+1
𝑖

−
𝜂𝑚
𝛼− 1

2

2

𝑞𝑚+1𝛼,𝑖 − 𝑞𝑚+1
𝛼−1,𝑖

𝑙
𝛼− 1

2
ℎ𝑚+1
𝑖

⎞⎟⎟⎠ ,
(28)

where 𝜂𝛼+1∕2 is given by (13). Notice that for the particular cases 𝛼 = 1
and 𝛼 =𝑁 , previous equation should be modified according to bound-

ary conditions 𝐾𝑁+1∕2 = 0 and 𝐾1∕2 defined by (14).

Finally, let us remark that dealing with dry areas is always a hard 
issue from the numerical point of view. Thus, the second step of the 
scheme is modified in case of wet/dry fronts. In practice, if the height 
ℎ𝑚+1
𝑖

is lower than a tolerance, which we set as 10−6, then we discretize 
the viscous terms there as explained but considering a one-layer model. 
The motivation is that a multilayer description makes no sense in case of 
too small material thicknesses, then we simply treat it as the one-layer 
case.

Remark 1. In the case of considering the multilayer model (21) with the 
normal stress contributions, the second step must be accordingly modi-

fied in order to discretize also the term 𝜕𝑥
(
2ℎ𝛼𝜂𝛼𝜕𝑥𝑢𝛼

)
in a semi-implicit 

way. In that case, the 𝑁 ×𝑁 tridiagonal linear system (28), which is 
solved in each control volume 𝑉𝑖 for 𝑖 = 1, … , 𝑁𝑥, is replaced by a pen-

tadiagonal linear system with 𝑁 ⋅𝑁𝑥 equations and unknowns that is 
solved for the whole domain. It leads to a huge increase of the computa-

tional cost compared to the algorithm for model (10). The linear system 
is solved with a biconjugate gradient stabilized method, although other 
linear solvers can be used.

5. Numerical tests

In this section we present some numerical tests to evaluate the pro-

posed multilayer model, comparing it with analytical solutions and 
experimental data. Unless otherwise stated, model (10) is considered. 
In subsection 5.1 a test with the analytical solution of a uniform 
flow is presented. The ability of multilayer approach to reproduce the 
sheared/pseudoplug layers is shown. In subsection 5.2 the influence of 
the well-balanced treatment described in previous section is analyzed. 
We study the accuracy of the numerical scheme preserving the steady 
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states at rest with non-planar free surface. Later, in subsection 5.3, we 
compare the multilayer results with the experimental data of [4,3] vis-

coplastic dam breaks and with the results of lubrication models.

Unless otherwise specified, the material properties are

𝜌 = 1000 𝐾𝑔∕𝑚3, 𝜏𝑦 = 33 𝑃𝑎, 𝐾 = 26 𝑃𝑎𝑠𝑛, 𝑛 = 0.33, (29)

corresponding to Carbopol ultrez 10 at a mass concentration of 0.15%
(see [3,4] for details of the whole experimental setup). We fix 𝐶𝐹𝐿 = 0.5
and 𝛿 = 10−5.

Concerning our choice of this regularization parameter, it agrees 
with other works for viscoplastic fluids, as [34,20,42]. In these works, 
authors analyzed deeply the influence of 𝛿 on the convergence, and 
also its connection with the spatial discretization. In subsection 5.1 we 
use the first order HLL scheme described in section 4 to deal with a 
uniform flow. While in subsections 5.2 and 5.3, its second order version 
is considered in order to reduce the numerical diffusion in more general 
flow configurations. The second order discretizations are based on a 
MUSCL reconstruction for space (see e.g. [17]) and the Heun method 
for the time.

When showing errors, they are computed as follows. For any generic 
variable 𝑤, being 𝑤𝛼,𝑖 the approximated value in the volume 𝐼𝑖 and 
layer Ω𝛼 (or 𝑤𝛼,𝑖 ≡𝑤𝑖 if the variable does not depend on 𝑧), we consider 
the 𝐿1, 𝐿2, and 𝐿∞ norms

‖𝑤‖1 = Δ𝑥
𝑁𝑥∑
𝑖=1

ℎ𝑖

𝑁

𝑁∑
𝛼=1

||𝑤𝛼,𝑖
|| , ‖𝑤‖2 =

√√√√Δ𝑥
𝑁𝑥∑
𝑖=1

ℎ𝑖

𝑁

𝑁∑
𝛼=1

𝑤2
𝛼,𝑖, and

‖𝑤‖∞ = max
𝛼=1,...,𝑁
𝑖=1,...,𝑁𝑥

||𝑤𝛼,𝑖
|| ,

being 𝑁𝑥 the number of cells in the horizontal discretization and 𝑁
the number of vertical layers. If we measure the error in the vertical 
direction for a fixed control volume 𝐼𝑖, we denote

‖𝑤‖𝐼𝑖,1 = ℎ𝑖

𝑁

𝑁∑
𝛼=1

||𝑤𝛼,𝑖
|| , ‖𝑤‖𝐼𝑖,2 =

√√√√ ℎ𝑖

𝑁

𝑁∑
𝛼=1

𝑤2
𝛼,𝑖, and

‖𝑤‖𝐼𝑖,∞ = max
𝛼=1,...,𝑁

||𝑤𝛼,𝑖
|| .

Then, absolute errors are computed as

Err𝑝[𝑤] = ‖𝑤− 𝑤̂𝑟𝑒𝑓‖𝑝, Err𝑧𝑝[𝑤] = ‖𝑤− 𝑤̂𝑟𝑒𝑓‖𝐼𝑖,𝑝, for 𝑝 = 1,2,∞,

where 𝑤̂𝑟𝑒𝑓 is the projection of the reference solution into the discrete 
solution space. Unless otherwise specified, absolute errors are consid-

ered.

5.1. Analytical solution for a uniform flow

Let us first compare with a uniform flow (no variations in the 𝑥-

direction) over a constant slope, starting from the rest. In this config-

uration, the analytical solution is known (see [22,39,4,32,19] among 
others). Let us briefly summarize how this solution is obtained.

We consider a uniform flow with height ℎ over an inclined plane 
with constant slope 𝜃 > 0. Under the uniform assumption and assuming 
𝑏 = 0, system (5) yields

𝑝(𝑧) = 𝜌𝑔 cos𝜃 (ℎ− 𝑧) , 𝜏𝑥𝑧(𝑧) = 𝜌𝑔 sin𝜃 (ℎ− 𝑧) .

Taking into account the definition of 𝝉 and assuming 𝑠𝑖𝑔𝑛(𝜕𝑧𝑢) > 0, we 
get

𝜏𝑥𝑧(𝑧) = 𝜏𝑦 +𝐾
(
𝜕𝑧𝑢
)𝑛

, if ||𝜕𝑧𝑢|| > 0, (30a)

and in case ||𝜕𝑧𝑢|| = 0, we only know that ||𝜏𝑥𝑧|| < 𝜏𝑦 holds, or equivalently

𝑧 > ℎ𝑐, with ℎ𝑐 = ℎ− ℎ𝑝,
106
where ℎ𝑝 is the thickness of the unsheared (or pseudoplug) layer, also 
called the pseudo-yield surface [8]. Then, ℎ𝑝 is given by the yield con-

dition 𝜏𝑥𝑧 = 𝜏𝑦, getting therefore

ℎ𝑝 =
𝜏𝑦

𝜆𝐾
, with 𝜆 = 𝜌𝑔 sin𝜃

𝐾
. (30b)

Note that the ℎ𝑐 level defines the interface between the sheared and the 
pseudoplug layers. Thus, from (30a) we have

𝜕𝑧𝑢 = 𝜆1∕𝑛
(
ℎ𝑐 − 𝑧

)1∕𝑛
, if 𝑧 < ℎ𝑐, (30c)

which is integrated to obtain the analytical profile of the velocity

𝑢(𝑧) =
⎧⎪⎨⎪⎩
𝑢plug

(
1 −
(
1 − 𝑧

ℎ𝑐

)(𝑛+1)∕𝑛
)
, if 𝑧 < ℎ𝑐,

𝑢plug, otherwise,

(30d)

where

𝑢plug = 𝑢(ℎ𝑐 ) =
𝑛

(𝑛+ 1)
𝜆1∕𝑛 ℎ

(𝑛+1)∕𝑛
𝑐 (30e)

is the velocity in the pseudoplug layer. Here, a no-slip condition at the 
bottom has been used, although a basal velocity different from zero 
could be considered (see [38]).

From a dimensional analysis, an analytical profile that accounts for 
the term 𝜕𝑥ℎ can be also deduced for a non-uniform flow. This is ac-

tually the approach of the lubrication theory, where convective and 
time derivatives are neglected in the momentum conservation equa-

tion, whereas pressure and viscous terms are kept (see the references 
mentioned above).

It takes the form (30) by replacing 𝜆 in (30b) by

𝜆 = 𝜌𝑔 cos𝜃
𝐾

(
tan𝜃 − 𝜕𝑥ℎ

)
. (31)

Notice that it has no influence in this test, since 𝜕𝑥ℎ = 0 holds in a 
uniform flow. Nevertheless, this analytical profile will be considered in 
subsection 5.3 for a general flow.

We consider here a slope 𝜃 = 20◦ and a flow initially at rest, whose 
height is ℎ0(𝑥) = 0.05 𝑚, and open boundary conditions, for a domain 
𝑥 ∈ [0, 1], with a no-slip condition (18) at the bottom. We take 100(=
𝑁𝑥) nodes for the horizontal discretization and 𝐶𝐹𝐿 = 0.8.

Fig. 2 shows a good agreement between the computed approxima-

tion (𝑁 = 64 layers) and the analytical solution (30) for the velocity, 
strain rate and deviatoric stress tensor. Note that for 𝑧 > ℎ𝑐 we obtain 
that 𝜕𝑧𝑢 ≈ 0 (its order of magnitude is around 10−5, 10−6 due to the value 
of 𝛿 = 10−5 in the regularized viscosity coefficient), where the velocity 
profile is constant and the deviatoric tensor is undefined. In Table 1

we show the 𝐿1, 𝐿2, and 𝐿∞ errors with respect to the analytical solu-

tion and the numerical convergence rates. In this test, we see that the 
method is second order accurate for the velocity. Let us mention that 
similar results are obtained in Table 1 and Fig. 2 when using a smaller 
regularization parameter 𝛿 = 10−8, where ||𝜕𝑧𝑢|| ∼ 10−9 in the plug zone. 
Table 1 also shows the computation time required to reach 𝑡𝑓 = 25 s, 
where we see, approximately, a linear increase of the computational ef-

fort with the number of vertical layers, similarly to what was observed 
in [27].

5.2. Steady-at-rest solutions and well-balanced discretization

In this subsection, we check the ability of the proposed scheme to 
preserve steady solutions given by (22). Let us first remark that this 
inequality provides not only a steady state but a family of such steady 
states. Here we deal with the limit case given by the equality. Note that 
if such state is preserved then any of the states in the family (22) is also 
preserved.

We set the domain [0, 𝑥𝑅] with wall boundary conditions. At the 
bottom, a friction condition (15) with 𝐾𝑏 = 𝐾 is considered. The flow 
is at rest at the initial time. In this case, we take as slope 𝜃 = 10◦ and 
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Fig. 2. Comparison of the computed 𝑢, ||𝜕𝑧𝑢|| and 𝜏𝑥𝑧 profiles using 64 layers with analytical solution (30).

Table 1

Numerical convergence results for the vertical profile of velocity in 𝐿1, 𝐿2 , and 𝐿∞ norms for a 
uniform flow, and computation time (t𝑐𝑜𝑚𝑝) needed to simulate up to 𝑡𝑓 = 25 s.

N. layers t𝑐𝑜𝑚𝑝 (s) Err𝑧1[𝑢] Order1[𝑢] Err𝑧2[𝑢] Order2[𝑢] Err𝑧∞[𝑢] Order∞[𝑢]

4 1.8 9.02×10−3 - 4.13×10−2 - 2.45×10−1 -

8 2.9 2.27×10−3 1.99 1.04×10−2 1.99 6.64×10−2 1.88

16 5.4 5.68×10−4 2.00 2.61×10−3 2.00 1.73×10−2 1.94

32 10.9 1.42×10−4 2.00 6.53×10−4 2.00 4.41×10−3 1.97

64 23.9 3.55×10−5 2.00 1.63×10−4 2.00 1.11×10−3 1.99

Fig. 3. Free surface solutions for (a) Test 1 and (b) Test 2 at the initial time (black dashed line), and at time 𝑡 = 10 s with the proposed scheme (green dotted lines). 
Gray dashed lines in (b) are the solutions without the well-balanced treatment in (26). Remind that 𝛿 = 10−5 , here.
the same material properties (29), except for the yield stress taken as 
𝜏𝑦 = 66 𝑃𝑎.

In order to perform a concrete numerical test, we consider here the 
case 𝑏 = 0 and (− tan𝜃 + 𝜕𝑥ℎ) < 0, so the initial condition is given by the 
steady state (24). In practice, we need to set the value of ℎ(0) = ℎ0 to 
find ℎ(𝑥). We set

ℎ0 =
𝜏𝑦

𝜌𝑔 cos𝜃(tan𝜃 + 𝜖)
,

with 𝜖 = 10−3. We consider two tests: Test 1 if 𝑥𝑅 = 0.8 and Test 2 if 
𝑥𝑅 = 1. The obtained analytical free surfaces are shown in Fig. 3, where 
we see that it exhibits a regular shape for Test 1, whereas we have a dry 
front in Test 2 with an infinite slope at the front position 𝑥𝑓 . This point 
can be exactly computed from (24), yielding to

𝑥𝑓 = 𝜁 − 𝛾

𝜅2 log 𝛾 ≈ 0.919.

Let us remark that ℎ(𝑥) is the same for Test 1 and Test 2, and the only 
difference is the fact that, in Test 2, we see the front position 𝑥𝑓 and 
dry areas since 𝑥𝑅 > 𝑥𝑓 .

For both tests we consider 10 vertical layers. We clarify that there 
is no difference between the one-layer model and the multilayer model 
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when looking at the steady-at-rest solutions, since these steady states 
are the same for both models as stated in subsection 3.3. For Test 1, 
we consider 𝑁𝑥 = 400 cells, whereas 𝑁𝑥 = 1600 is used in Test 2 in 
order to better capture the complex initial profile at the front. In Fig. 3, 
we also see the computed multilayer solutions with the well-balanced 
numerical scheme proposed here at final time 𝑡 = 10 s. In Fig. 3b we 
also see the solution obtained for the scheme without a well-balanced 
correction (NoWB hereinafter) of the numerical diffusion (26). Despite 
the fact that the velocity is quite small, we see the movement of the 
free surface, that continues moving along the time. This is due to the 
numerical diffusion and not to a physical effect. On the contrary, we do 
not see differences between the initial and final states when the well-

balanced discretization is used.

Let us remark again that in our scheme, it is not possible to obtain 
zero velocity or null variation of height because of the regularization 
method. It always leads to a residual velocity. Interestingly, there is 
a strong relation between the order of magnitude of both the residual 
velocity and the variation of the height with respect to the initial condi-

tion, and the value of the regularization parameter (𝛿) used in (13). We 
show in Fig. 4 the maximum velocity, which corresponds to the closest 
velocity to the free surface, for different values of 𝛿 and for both tests. 
We see that the velocity is about 10−6 for 𝛿 = 10−5 whereas its order 
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Fig. 4. Maximum velocity (log10(𝑢𝑁 )) for the considered steady state tests for different values of the regularization parameter (𝛿) at 𝑡 = 10 s, and also the well-balanced 
discretization in (26). Inset figure in (b) Test 2 is a zoom of the front position.
Table 2

Errors with respect to the initial state for the Test 1 and Test 2 for different 
values of the regularization parameter 𝛿. WB and NoWB denote a well-balanced 
or not well-balanced discretization.

Test 1: No dry front - WB

𝛿 = 10−5 𝛿 = 10−7 𝛿 = 10−10 𝛿 = 10−12 𝛿 = 10−15

Err1[ℎ] 1.07×10−7 1.17×10−9 1.56×10−12 1.98×10−14 2.40×10−18

Err2[ℎ] 1.21×10−6 1.30×10−8 1.35×10−11 1.44×10−13 6.97×10−18

Err∞[ℎ] 2.63×10−5 2.85×10−7 2.86×10−10 2.85×10−12 4.86×10−17

Err1[𝑢] 1.07×10−8 1.63×10−10 3.52×10−13 5.98×10−15 8.28×10−18

Err2[𝑢] 6.42×10−8 9.69×10−10 2.08×10−12 3.54×10−14 4.89×10−17

Err∞[𝑢] 4.71×10−7 6.78×10−9 1.39×10−11 2.39×10−13 3.38×10−16

Test 2: dry front - WB NoWB

𝛿 = 10−5 𝛿 = 10−10 𝛿 = 10−15 𝛿 = 10−10

Err1[ℎ] 1.37×10−7 4.90×10−11 3.70×10−11 6.63×10−4

Err2[ℎ] 1.68×10−6 1.13×10−9 9.67×10−10 2.20×10−3

Err∞[ℎ] 5.87×10−5 3.45×10−8 2.96×10−8 1.79×10−2

Err1[𝑢] 1.12×10−8 3.74×10−13 1.16×10−15 4.45×10−7

Err2[𝑢] 6.53×10−8 2.27×10−12 8.03×10−13 1.69×10−5

Err∞[𝑢] 4.71×10−7 5.65×10−10 5.63×10−10 1.49×10−3

of magnitude is approximately 10−16 for 𝛿 = 10−15. For Test 2 (Fig. 4b, 
inset figure) we see a small spike of order 10−10 just at the dry front 
position. It is seen for 𝛿 = 10−10, 10−15 but not for 𝛿 = 10−5 since the 
residual velocity is greater than this spurious spike.

In Table 2, we give the errors on the height and the full velocity 
field for both tests and all the tested values of 𝛿, and also for the NoWB 
discretization. Here errors are measured against the initial condition, 
which is the analytical steady state. We see that for all the cases the 
WB discretization allows us to preserve the steady state up to the pre-

cision of the regularization parameter 𝛿. We also see that the errors are 
greater for Test 2 for 𝛿 = 10−10 and 10−15 due to the spike at the front 
position, whereas they are similar for 𝛿 = 10−5. We also show the errors 
for the NoWB discretization. Remark that the variations on the height 
in that case are approximately of the order of ℎ(𝑥). We must also men-

tion that it is possible to use very small values of 𝛿 in this test because 
it is a steady-at-rest case. In subsections 5.1 and 5.3 corresponding to 
transient problems, we cannot use too small values (e.g. 𝛿 = 10−12) for 
stability and convergence reasons (see [42]).

5.3. Viscoplastic dam break

The goal of this subsection is to show the advantages of using the 
multilayer approach for dam break problems. Mainly, we are able to get 
information about the vertical structure of the fluid at different stages 
of the flow, in contrast to reconstructing the velocity profile from a 
(quasi)uniform analytical configuration (see e.g. [7,32,19]). We also 
108
compare here with the laboratory experiments of [3,4], and with the 
results of the lubrication model in these references. Lubrication models 
are deduced by neglecting convective and time derivative terms in the 
horizontal momentum equation, where the analytical profile (30d) is 
obtained. Next, this velocity profile is integrated to obtain the depth-

averaged velocity 𝑢, which is introduced in the mass equation

𝜕𝑡ℎ+ 𝜕𝑥
(
ℎ𝑢
)
= 0

to get a parabolic PDE describing the free surface evolution. We also 
compare with experimental vertical profiles of velocity of [4]. Finally, 
some numerical aspects related to the well-balancing and the space dis-

cretization order of the scheme will be also presented.

We consider the dam break test presented in [3], which consists of 
experiments performed with Carbopol ultrez 10 at a mass concentra-

tion of 0.15%, as commented on previously. The material properties are 
those of (29). They put 6 liters of material in a deposit above a plat-

form, which is inclined to a slope of 𝜃 degrees. Then, the gate is quickly 
opened and the material flows out. In order to simulate these exper-

iments, we consider 𝑥 ∈ [0, 3.5] with 𝑁𝑥 = 1400 cells and 16 vertical 
layers. In order to be more accurate in the vertical direction, we used 
32 layers in some particular figures showing vertical effects. If the pre-

vious default case is not used, this will be clarified in the figure legend. 
The initial height is

ℎ(𝑥) =
{

0.12 + (𝑥− 0.25) tan𝜃 if 𝑥 ≤ 0.5,
0 otherwise,

the material is at rest at 𝑡 = 0 and the local bottom is 𝑏 = 0. A wall 
boundary condition is used at 𝑥 = 0 and open boundary at 𝑥 = 3.5 𝑚. 
Finally, in order to compare with these laboratory experiments and the 
results of the one-layer model, where the Coussot’s formula is used as in 
[3], we consider the friction condition given by (17), whose results are 
similar to the Coussot’s friction case (16). Results for different friction 
conditions will be commented below (see Fig. 8).

Fig. 5 shows the time evolution of the free surface with 𝜃 = 15◦ and 
25◦ for the multilayer model (10) and model (21) with normal stress 
contributions, and the one-layer model, where we see an initial “inertial” 
phase of the dam break (𝑡 ≤ 2 approximately), with a fast movement of 
the material, and after that a phase, which we call “spreading” phase, 
with a slow movement with a small velocity. The distinction between 
these two phases is clearly visible also in Fig. 7 where the evolution 
of the front position and its velocity are shown. The results of models 
(10) and (21) are similar for both slopes, except near the front position, 
where the diffusive term in (21) produces a rounded shape, specially 
for the case 𝜃 = 25◦. We see in Fig. 5 how the material continues to flow 
for a long time. In the first part of the domain we see a plateau effect 
at large times. It is due to the decreasing of the height, since looking 
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Fig. 5. Time evolution of the local free surface, for 𝜃 = 15◦ and 25◦ at different times, with the multilayer model (10) (red dash-dotted lines) and model (21) (orange 
solid lines), and the one-layer model (cyan dashed lines).

Fig. 6. Upper figure: local free surface ℎ(𝑥) at different times; Lower figures: time evolution of the local free surface at point 𝑥 = 0 m, for 𝜃 = 15◦ with the multilayer 
model (10) (red dash-dotted lines) and the lubrication model (green (+) lines).
at the sufficient condition to be at steady state (23), when the height is 
small enough with very small velocity, then the material stops. It leads 
to a static thin layer of material, whose height is approximately ℎ𝑝 (see 
(30b)). It is also observed in Fig. 6, where we show a comparison with 
the lubrication model for the free surface, and the time evolution of 
the height at point 𝑥 = 0 m. We see that with the multilayer model 
(10) (similarly model (21)), this height decreases fast until the critical 
height ℎ𝑝 approximately, and from then it is constant. We also see a 
convergence toward this threshold for the lubrication model at very 
long times. In particular, it is consistent with the shape of the height in 
the first part of the domain predicted by the multilayer model, where a 
layer remains static and not all the material flows over the slope.
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We also observe that the flow with the one-layer model is faster than 
with the multilayer model, as expected, since multilayer model includes 
vertical viscous effects. We also see that the influence of the multilayer 
approach is more relevant for large slopes, where there are more dif-

ferences between one-layer and multilayer results. It is also what was 
observed (though the physics is quite different) for dry granular flows 
(see [27]).

The approximation of the front position (𝑥𝑓 ) is shown in Fig. 7

for the one-layer, multilayer and lubrication models. Nevertheless, we 
shall remark that the front position depends on a lot of different fac-

tors (wet/dry treatment, non-hydrostatic effects, and other assumptions 
in the simplified model). From a qualitative analysis of Fig. 7, we ex-
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Fig. 7. Time evolution of the front position 𝑥𝑓 (left-hand side) and the front velocity 𝑣𝑓 (right-hand side) in semilog scale, for 𝜃 = 15◦ and 25◦ , with the one-layer 
(cyan dashed lines) and multilayer model (10) (red dash-dotted lines) and multilayer model (21) (orange solid lines). Gray dotted lines are multilayer (10) solutions 
by a refinement of the mesh on 𝑥-direction Δ𝑥∕2, and circles are data experiments. Green (+) lines are the solution of the lubrication model. Inset figures in the 
right-hand side are zooms.

Fig. 8. Time evolution of the front position 𝑥𝑓 for 𝜃 = 15◦ and 25◦ with the multilayer model (10) and using different friction conditions: Coussot’s formula (16)

(brown dashed lines), no slip (18) (blue dash-dotted lines) and friction condition (15) for several values of 𝐾𝑏 (𝐾𝑏 = 1.93𝐾 corresponds to (17), purple squares). 
Circles are data experiments.
tract several conclusions. First, as commented before, multilayer effects 
are higher for larger slopes. Second, the front positions with multilayer 
and one-layer models remain very close to each other, especially in the 
inertial phase. We see small differences between them in the transition 
to the spreading phase, where the multilayer models predict a shorter 
front position. However, it is not enough to recover the experimental 
results. In particular, in the first inertial phase of the flow the results of 
shallow models are not far from the experimental ones, contrary to the 
lubrication model. However, the second spreading phase is not prop-
110
erly reproduced neither by multilayer nor, by one-layer and lubrication 
models. It is in agreement with the conclusions in [3]. We also show in 
Fig. 7 the time evolution of the front velocity (𝑣𝑓 ). We see an agreement 
between the experiments and lubrication model at the last stage of the 
flow. However, it is far from the experiments at the first inertial phase. 
As a consequence, both shallow and multilayer models reproduce bet-

ter the global behavior of the experiments, taking into account both 
phases. In the spreading phase, looking at the experiments, the front 
moves with a slightly decreasing velocity. This decrease of the velocity 
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Fig. 9. Velocity field (left-hand side), and log10(||𝜕𝑧𝑢||) (right-hand side) for 𝜃 = 15◦ at times 𝑡 = 0.2, 0.5, 1.0, 1.5 s during the inertial phase of the flow, computed with 
model (10). We use 32 vertical layers here.
is smaller with shallow models. In order to reproduce this effect at long 
times, it is very important to refine the horizontal discretization, as sug-

gested by the lines representing the solution with Δ𝑥∕2 in the evolution 
of both the front and the front velocity. One could conjecture that this 
effect can also be achieved by adding a fully non-hydrostatic pressure 
involving all the contributions of the stress tensor. This is a difficult task 
from the numerical point of view, even for the Newtonian case, which 
would be interesting to solve in the future. However, this is out of the 
scope of present paper. Moreover, friction with lateral walls could also 
have a significant impact on the approximation of the front position. 
Adding this effect in simulations, where a calibration of friction param-
111
eters is needed, should help to reduce discrepancies with the laboratory 
experiments, as also explained in [3].

We also show in Fig. 8 the evolution of the front position when 
using different friction coefficients defined in subsection 3.2, for 𝜃 = 15◦

and 25◦. We see that in the initial inertial phase there is almost no 
influence. However, some differences appear in the spreading phase. In 
particular, we see that friction condition (17) produces similar results 
to the Coussot’s formula (16), which is expected since we are using a 
value of 𝑛 very close to 0.3, that is the one in the Coussot’s formula. 
We also see that increasing significantly the value of 𝐾𝑏 (𝐾𝑏 = 10𝐾) has 
not a big influence on the front position. It agrees with our previous 
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Fig. 10. Velocity field (upper figure), and log10(||𝜕𝑧𝑢||) (lower figure) for 𝜃 = 15◦ at time 𝑡 = 10 s during the spreading phase of the flow, computed with model (10). 
We use 32 vertical layers here.
conjecture: adding other 3D effects would be more relevant to improve 
the approximation of the front position.

Although the front position is not significantly improved, the power 
of the multilayer approach is the fact that it recovers the vertical infor-

mation of the flow. Figs. 9 and 10 show, for model (10), the velocity 
field and also the distribution of ‖𝐷‖ ≈ ||𝜕𝑧𝑢|| for the case 𝜃 = 15◦. Fig. 9

focuses on the inertial phase whereas Fig. 10 shows a specific time 
of the spreading phase. We see that the multilayer approach repro-

duces the expected profile of velocity, which has a bottom sheared layer 
(‖𝐷‖ > 0) and top unsheared layer with a nearly constant profile (𝑢(𝑧)
constant, ‖𝐷‖ ≈ 0). This divides the flow in a lower sheared and up-

per unsheared layers, in agreement with conclusions in [4] for these 
viscoplastic experiments. We remark that this division does not neces-

sarily appear very close to the front position, as it will be discussed 
later. Actually, a strength of the multilayer model is the ability to ap-

proximate this interface between the sheared and pseudoplug layers, 
that is clearly discerned in these figures when showing log10(‖𝐷‖). Re-

mark that, as it has been emphasized in previous subsections, we do not 
recover machine-precision zero velocity nor zero ‖𝐷‖ due to the regu-

larization of the viscosity coefficient. In practice, we use a tolerance 4𝛿
to compute this interface, which is of the order of magnitude of the 
regularization parameter.

One could suggest that a way to recover the vertical profile of veloc-

ity is to reconstruct it from the analytical expression (30d) with (31), 
which takes into account the term 𝜕𝑥ℎ. In fact, the interface between 
the sheared and unsheared layers is also approximated once one has 
ℎ𝑝 (30b). In Fig. 11, we show the velocity profiles at several times and 
locations obtained by the multilayer model (10) for 𝜃 = 15◦, together 
with the profiles obtained by the analytical formula once ℎ (and there-

fore 𝜕𝑥ℎ) is known. We remark that the analytical approach is computed 
from the multilayer height (both ℎ and 𝜕𝑥ℎ). Actually, we show the an-

alytical profiles with and without the correction corresponding to 𝜕𝑥ℎ
(31). It can be seen that the analytical profiles differ largely from the 
multilayer profiles during the inertial phase (upper figure). However, 
during the spreading phase, the approximations given by the analytical 
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formula are in good agreement with the multilayer profiles. It indicates 
that in the spreading phase, the flow is very close to a (quasi)uniform 
regime, as expected. It is interesting to see the influence of the 𝜕𝑥ℎ
term in the analytical profile. It notably improves the approximation, 
in particular near the front. Moreover, this correction goes in the good 
direction with respect to the agreement with the multilayer profiles in 
both the first and last part of the domain. We also show the analytical 
interface between the sheared/unsheared zones (including 𝜕𝑥ℎ). Simi-

lar conclusions are obtained, i.e., at initial times the results differ but 
they are very close for the spreading phase.

In Fig. 12, we quantify the relative differences made by the analyti-

cal and the multilayer velocity fields and interfaces, for 𝜃 = 15◦, 25◦. We 
see here that these differences are huge in the inertial phase. However, 
these differences stabilize around 2% for 𝜃 = 15◦ (5% for 𝜃 = 25◦) for 𝐿1
and 𝐿2 norms, and 7% for 𝜃 = 15◦ (12% for 𝜃 = 25◦) for 𝐿∞ norm, for 
the interface approximation. Concerning the velocity field, these differ-

ences are greater. They stabilize around 11% for 𝜃 = 15◦ (9% for 𝜃 = 25◦) 
for 𝐿1, 𝐿2 norms, and 100% for 𝜃 = 15◦, 25◦ for 𝐿∞ norm. We note that 
similar results were obtained here when using 𝛿 = 10−6, 10−7, except for 
the initial inertial phase where errors are slightly larger. It is due to 
some spurious oscillations that appear near the front position when too 
small values of the regularization parameter are used. Note that the tol-

erance for recovering the yield surface is also decreased with 𝛿 since we 
use the value 4𝛿 as tolerance.

Figs. 13 and 14 show a qualitative comparison, using model (10), of 
the velocity profiles measured in the experiments in [4] for 𝜃 = 15◦, 25◦. 
Let us detail this comparison. In the experiments, the velocity profile is 
always measured at the observation point 𝑥 = 2.55 𝑚. Now, they show 
different profiles of velocity depending on Δ𝑥𝑓 = 𝑥 −𝑥𝑓 , that is, the dis-

tance from the point where the profile is measured to the front position. 
Notice that the values of Δ𝑥𝑓 are small, so they gave the velocity pro-

file very close to the front position. Let us remark that it is a difficult 
task from the numerical point of view since we need to deal with a dry 
front, where 𝜕𝑥ℎ goes to infinity when approximating in the neighbor-

hood of the front position. Fig. 13 shows the velocity profile for 𝜃 = 15◦
measured when Δ𝑥𝑓 = −30.6 𝑚𝑚. We show this profile measured ex-
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Fig. 11. Profiles of velocity at 𝑥 = 0.25, 0.5, ..., 2 m at times 𝑡 = 0.5 s (inertial phase) and 𝑡 = 6, 10 s (spreading phase). We use 32 vertical layers here. Black lines 
are the multilayer profiles, cyan (+) lines are the analytical profile (30) whereas circled red profiles are analytical profiles with the influence of 𝜕𝑥ℎ (31), both 
analytical approaches computed with the multilayer height. For a better graphical representation each 0.25 m, all profiles are normalized with 𝑈 = 4 max𝑖,𝛼 ||𝑢𝛼,𝑖|| for 
𝑖 = 1, … , 𝑁𝑥, 𝛼 = 1, … , 𝑁 . Blue dashed lines represent the interface between the sheared and unsheared layers, and red dotted lines are its analytical approximations 
given by ℎ𝑐 with (31).

Fig. 12. Relative differences in semilog scale between the computed velocity field and interface (ℎ𝑐 ) between the sheared and unsheared layers, and the approxima-

tions given by the analytical expressions (30d), (30e) and (31) (𝜕𝑥ℎ computed with the multilayer height). Left: slope 𝜃 = 15𝑜. Right: slope 𝜃 = 25𝑜. We use 32 vertical 
layers here.
actly at 𝑥 = 2.55 𝑚, and also when we move 1 and 2 cm to the right but 
keeping the same distance to the front Δ𝑥𝑓 . Notice than each subfigure 
then corresponds to a different time. We see that the velocity profiles 
obtained with the multilayer model are in good agreement with the ex-
113
periments. The analytical solution, where ℎ and 𝜕𝑥ℎ are computed from 
the multilayer results, produces in this case very small (almost zero) 
velocity, most surely because the shape of the front computed with the 
multilayer model is not steep enough. We also see in this figure how the 
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Fig. 13. Vertical profiles of velocity at 𝑥 = 𝑥𝑓 +Δ𝑥𝑓 for 𝜃 = 15◦. Blue dash-dotted lines are the multilayer results (model (10)), red circles (resp. green crosses) are 
the analytical profiles (31) with the gradient 𝜕𝑥ℎ computed from the multilayer (resp. experimental) height profile, and gray circles are experimental data of [4]. 
We use 32 vertical layers here.

Fig. 14. Vertical profiles of velocity at Δ𝑥𝑓 = 𝑥 −𝑥𝑓 for 𝜃 = 25◦ at time 𝑡 = 14.4 s. Blue dash-dotted lines are the multilayer results (model (10)), red circles (resp. green 
crosses) are the analytical profiles (31) with the gradient 𝜕𝑥ℎ computed from the multilayer (resp. experimental) height profile, and gray circles and circle-dotted 
line are experimental data of [4]. The blue solid line is the multilayer free surface approximation and the blue dashed line is the interface between the pseudoplug 
layer and the sheared layer. Finally, the gray circle-dotted line is the experimental free surface. We use 32 vertical layers here.
analytical approach with ℎ and 𝜕𝑥ℎ corresponding to the experimental 
results, where 𝜕𝑥ℎ is computed by an interpolation technique (see [4]

for details), is able to recover the experimental velocity profile.

In Fig. 14, we show the vertical profiles for a fixed time, and for 
several distances to the front position Δ𝑥𝑓 . In this case, we cannot com-

pare when the front is close to 𝑥 = 2.55 𝑚 because the multilayer model 
is in a different flow regime than the one in the experiments when the 
material reaches this location. Let us explain this fact. When the veloc-

ity profiles are measured in the experimental case, the flow is in the 
spreading phase for more than 10 seconds, which is not the case for 
the multilayer case, where the duration of the inertial phase is much 
longer. Then, in order to compare the observed velocity profiles, we 
should place ourselves in the same regime, i.e. when the flow is in the 
spreading phase since a time interval similar to that of the experiments. 
Here, we thus show the vertical profiles for several distances Δ𝑥𝑓 at 
time 𝑡 = 14.4 𝑠, which allows us to make a qualitative comparison of 
the obtained vertical profiles. In general, we see a good agreement be-

tween the profiles far from the front (|||Δ𝑥𝑓 ||| ≥ 40 𝑚𝑚). However, the 
velocity very close to the front (|||Δ𝑥𝑓 ||| ≤ 20 𝑚𝑚) is underestimated. For 
the analytical approach, which is again computed with the multilayer 
height, we find similar conclusions, except that the analytical approach 
strongly underestimates the velocity for |||Δ𝑥𝑓 ||| ≤ 72.5 𝑚𝑚, and the pre-

dicted velocity is very small very near the front. It is due to the fact that 
the height is not well approximated very close to the front position, as 
we see in this figure. However, when the analytical profile is computed 
using the experimental height (and also 𝜕𝑥ℎ), the velocity very close to 
the front is overestimated (see inset figure in Fig. 14 corresponding to 
a zoom). It is worth mentioning that we do not see a plug zone very 
close to the front in the experiment but a pseudoplug zone. It is not 
reproduced neither by model (10) nor the analytical approach.
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As explained in subsection 3.2.2, in [8] it was shown that in non-

uniform flows we recover a pseudoplug layer, in which the shear rate 
is ‖𝐷(𝒖)‖ ∼ 𝜀. In this section, we have explained how to obtain a model 
reproducing this pseudoplug layer instead of a plug layer. In order to 
show how the normal stress contributions allow model (21) to repro-

duce the pseudoplug layer, we see in Fig. 15 the velocity profiles close 
to the front for the same case as before (𝜃 = 25◦). We see how the ve-

locity profiles at |||Δ𝑥𝑓 ||| ≤ 20 𝑚𝑚 have not a plug layer but a pseudoplug 
layer when they are computed with model (21). Notice that, in this fig-

ure, the free surface computed with model (21) presents a small change 
of curvature. It is a numerical artifact, which is due to the numerical 
resolution of the full 2D (𝑥 − 𝑧) linear system close to the front posi-

tion. We also show in Fig. 16 the shear rate ‖𝐷𝜀‖ (9b), which includes 
the contribution of the term 𝜕𝑥𝑢 in this case, where the shear rate is of 
the order of the shallowness parameter 𝜀 =𝐻∕𝐿 ≈ 0.02∕2 = 10−2 in the 
pseudoplug layer, as shown in [8]. In these figures, we also observe that 
the interface separating the pseudoplug and sheared layers changes its 
convexity near the front, which is in agreement with [19].

Let us remark that an added-value of the multilayer approach pre-

sented here, with respect to the lubrication theory, is the fact that it 
is possible to recover the velocity field also in the first inertial phase 
(where the lubrication theory is not valid) and not only in the last 
spreading phase.

Fig. 17 shows the importance of the discretizations (in time and 
space) for this dam break problem. In Fig. 17a we see the effect of the 
numerical diffusion on the spreading phase when using the first or sec-

ond order WB schemes. Recall that the extension to second order in 
space and time is done with a MUSCL reconstruction and the Heun 
method. During the inertial phase, the differences are rather small, 
while they become significant in the spreading phase. Actually, those 
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Fig. 15. Comparison of vertical profiles of velocity close to the front position for 𝜃 = 25◦ computed with multilayer models (10) (blue lines) and (21) (brown lines). 
Thin dashed lines are the interfaces separating the (pseudo-)plug/sheared layers. In the case of model (21), we use the criterion ‖𝐷𝜀‖ < 10−2 ≈ 𝜀 =𝐻∕𝐿. Gray circles 
and circle-dotted line are experimental data of [4]. Blue (resp. orange) solid and dashed lines represent the free surface and the interface between the pseudoplug 
layer and the sheared layer computed with the multilayer model (10) (resp. (21)) and the gray circle-dotted line is the experimental free surface. We use 32 vertical 
layers here.

Fig. 16. log10(‖𝐷𝜀‖) for 𝜃 = 25◦ during the spreading phase of the flow (𝑡 = 14.4 s) for model (21). We use 32 vertical layers here.

Fig. 17. Effect of the numerical diffusion in the spreading phase of the flow (a) with a first/second order time-space scheme (b) without the well-balanced treatment 
of (26). Model (10) is used here. Inset figures are zooms of the domain.
become obvious in the formation of the static layer (at the back of the 
flow) whose height is approximately ℎ𝑝. It has a straight shape with the 
second order scheme while it is smoothed with the first order scheme, 
which is a usual effect of numerical diffusion. Fig. 17b shows the re-
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sults of the proposed scheme and the scheme without a well-balanced 
treatment (NoWB). As expected, at initial times (before 𝑡 = 2 s approxi-

mately) there are not significant differences. However, the dynamics are 
vastly different at larger times. We see the effect of the numerical diffu-
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Table 3

Computation times (s) needed by model (10) to reach 𝑡𝑓 = 15 s, and speed-ups, 
for the case 𝜃 = 25◦ , 𝑁𝑥 = 1400 and 𝐶𝐹𝐿 = 0.5.

N. layers (N) 𝑁 = 1 𝑁 = 2 𝑁 = 4 𝑁 = 8 𝑁 = 16 𝑁 = 32

t𝑐𝑜𝑚𝑝(s) 30.9 45.7 73.8 137.8 262.6 544.4

t𝑐𝑜𝑚𝑝(N)/t𝑐𝑜𝑚𝑝(N/2) - 1.5 1.61 1.87 1.91 2.07

t𝑐𝑜𝑚𝑝(N)/t𝑐𝑜𝑚𝑝(1) - 1.5 2.4 4.5 8.5 17.6

sion in both the left part (close to 𝑥 = 0) and the front. At the advancing 
front, the well-balanced scheme exhibits an almost straight shape, while 
an advanced lower layer of material is formed with the NoWB scheme, 
which has no physical meaning. In addition, in the left part, we see 
the plateau effect with (approximately) height ℎ𝑝 for the well-balanced 
scheme, whereas all the material flows with the NoWB scheme, contrary 
to what is predicted by the steady state condition (see (23)).

Concerning the computational efforts of multilayer model (10), Ta-

ble 3 shows the computation time needed to reach the final time 𝑡𝑓 = 15
s, with the slope 𝜃 = 25◦, 𝑁𝑥 = 1400 and 𝐶𝐹𝐿 = 0.5. We also show the 
ratio with respect to the one-layer case, and with respect to the case of 
using half of layers. As it is highlighted in subsection 5.1, the compu-

tation time increases linearly with the number of layers. In particular, 
the multilayer system with 16 layers is 8.5 times more expensive than 
the one-layer model. We remark again that solving model (21) requires 
a huge computational effort. For instance, for the same case (𝜃 = 25◦, 
𝑁𝑥 = 1400 and 16 layers), it takes 24.3 hours, thus, it is 332 times more 
expensive than model (10).

6. Conclusions

Two multilayer Herschel-Bulkley models have been proposed. Their 
derivation stems from the Navier-Stokes system through an asymp-

totic analysis and the multilayer approach, where the vertical profile 
is no more constant along the normal direction but piecewise constant. 
These models differ in the viscous terms coming from the normal stress 
components, which allow the model to reproduce a pseudoplug layer in-

stead of a true plug zone. For such multilayer models, a well-balanced 
finite volume/finite difference scheme has been proposed, allowing us 
to preserve a relevant family of steady solutions at rest. In addition, we 
deal with the singularity in the definition of the stress tensor by means 
of a regularization technique, whose influence has been numerically 
studied for steady solutions.

In the numerical tests, we have compared the numerical results with 
an analytical solution for uniform flows, showing the ability of the mul-

tilayer model to capture the vertical profile of velocity observed for 
these fluids. It exhibits a sheared (lower) layer and a (pseudo-)plug (up-

per) layer. We have shown the ability of the scheme to preserve steady 
solutions at rest, as well as the dependence of the obtained errors on 
the regularization parameter (𝛿). Moreover, we have also shown the 
importance of the hydrostatic reconstruction of the well-balanced treat-

ment for the numerical scheme. A comparison with viscoplastic dam 
break experiments of [3,4] has also been performed. In particular, we 
show a comparison with the lubrication theory, we measure vertical 
profiles of velocity, and we demonstrate the ability of the proposed 
model to reproduce the sheared (bottom) and (pseudo-)plug (top) lay-

ers in general flows. For these flows, we distinguish an initial inertial 
phase and a (late) spreading phase. In addition, the accuracy of the an-

alytic approach during the second quasi-uniform regime has also been 
studied. Furthermore, the pseudoplug layer has also been recovered for 
a multilayer model accounting for the normal stress contributions. In 
practice, both multilayer models, (10) and (21), produce similar results 
except for the pseudoplug zone and the velocity profiles very close to 
the front, whereas the computational cost is dramatically increased for 
model (21). In the future, it would be interesting to design efficient 
duality methods for multilayer systems, as well as going towards fully 
116
non-hydrostatic models including the contributions of the stress tensor 
to the pressure profile.
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