Mostrar el registro sencillo del ítem

Artículo

dc.creatorBlázquez Carmona, Pabloes
dc.creatorMora Macías, Juanes
dc.creatorMartínez Vázquez, Francisco Javieres
dc.creatorMorgaz, Juanes
dc.creatorDomínguez Abascal, Jaimees
dc.creatorReina Romo, Estheres
dc.date.accessioned2023-09-26T15:37:50Z
dc.date.available2023-09-26T15:37:50Z
dc.date.issued2023
dc.identifier.citationBlázquez Carmona, P., Mora Macías, J., Martínez Vázquez, F.J., Morgaz, J., Domínguez Abascal, J. y Reina Romo, E. (2023). Mechanics Predicts Effective Critical-Size Bone Regeneration Using 3D-Printed Bioceramic Scaffolds. Tissue engineering and regenerative medicine, 20 (6), 893-904. https://doi.org/10.1007/s13770-023-00577-2.
dc.identifier.issn2212-5469es
dc.identifier.urihttps://hdl.handle.net/11441/149158
dc.descriptionThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons. org/licenses/by/4.0/.es
dc.description.abstractBACKGROUND: 3D-printed bioceramic scaffolds have gained popularity due to their controlled microarchitecture and their proven biocompatibility. However, their high brittleness makes their surgical implementation complex for weightbearing bone treatments. Thus, they would require difficult-to-instrument rigid internal fixations that limit a rigorous evaluation of the regeneration progress through the analysis of mechanic-structural parameters. METHODS: We investigated the compatibility of flexible fixations with fragile ceramic implants, and if mechanical monitoring techniques are applicable to bone tissue engineering applications. Tissue engineering experiments were performed on 8 ovine metatarsi. A 15 mm bone segment was directly replaced with a hydroxyapatite scaffold and stabilized by an instrumented Ilizarov-type external fixator. Several in vivo monitoring techniques were employed to assess the mechanical and structural progress of the tissue. RESULTS: The applied surgical protocol succeeded in combining external fixators and subject-specific bioceramic scaffolds without causing fatal fractures of the implant due to stress concentrator. The bearing capacity of the treated limb was initially altered, quantifying a 28–56% reduction of the ground reaction force, which gradually normalized during the consolidation phase. A faster recovery was reported in the bearing capacity, stiffening and bone mineral density of the callus. It acquired a predominant mechanical role over the fixator in the distribution of internal forces after one postsurgical month. CONCLUSION: The bioceramic scaffold significantly accelerated in vivo the bone formation compared to other traditional alternatives in the literature (e.g., distraction osteogenesis). In addition, the implemented assessment techniques allowed an accurate quantitative evaluation of the bone regeneration through mechanical and imaging parameters.es
dc.formatapplication/pdfes
dc.format.extent12 p.es
dc.language.isoenges
dc.publisherSpringeres
dc.relation.ispartofTissue engineering and regenerative medicine, 20 (6), 893-904.
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectTissue engineeringes
dc.subjectBioceramic scaffoldes
dc.subjectMechanobiologyes
dc.subjectComputerized tomographyes
dc.subjectBone mineral densityes
dc.titleMechanics Predicts Effective Critical-Size Bone Regeneration Using 3D-Printed Bioceramic Scaffoldses
dc.typeinfo:eu-repo/semantics/articlees
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Ingeniería Mecánica y de Fabricaciónes
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Física de la Materia Condensadaes
dc.relation.projectIDPID2020-113790RB-I00es
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s13770-023-00577-2es
dc.identifier.doi10.1007/s13770-023-00577-2es
dc.contributor.groupUniversidad de Sevilla. TEP111: Ingeniería Mecánicaes
dc.journaltitleTissue engineering and regenerative medicinees
dc.publication.volumen20es
dc.publication.issue6es
dc.publication.initialPage893es
dc.publication.endPage904es
dc.contributor.funderMinisterio de Ciencia e Innovación (MICIN). Españaes

FicherosTamañoFormatoVerDescripción
TERM_2023_Blazquez_Mechanics_OA.pdf1.342MbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Atribución 4.0 Internacional