Mostrar el registro sencillo del ítem

Artículo

dc.creatorFigueroa Bossi, Naraes
dc.creatorBalbontín Soria, Robertoes
dc.creatorBossi, Lionelloes
dc.date.accessioned2023-09-15T14:02:54Z
dc.date.available2023-09-15T14:02:54Z
dc.date.issued2023
dc.identifier.citationFigueroa Bossi, N., Balbontín Soria, R. y Bossi, L. (2023). Recombineering 101: Making an in-Frame Deletion Mutant. Cold Spring Harbor Protocols, 2023 (9), 628-637. https://doi.org/10.1101/pdb.prot107856.
dc.identifier.issn1940-3402es
dc.identifier.issn1559-6095es
dc.identifier.urihttps://hdl.handle.net/11441/148950
dc.description.abstractDNA recombineering uses phage λ Red recombination functions to promote integration of DNA fragments generated by polymerase chain reaction (PCR) into the bacterial chromosome. The PCR primers are designed to have the last 18-22 nt anneal on either side of the donor DNA and to carry 40- to 50-nt 5' extensions homologous to the sequences flanking the chosen insertion site. The simplest application of the method results in knockout mutants of nonessential genes. Deletions can be constructed by replacing a portion or the entirety of a target gene with an antibiotic-resistance cassette. In some commonly used template plasmids, the antibiotic-resistance gene can be coamplified with a pair of flanking FRT (Flp recombinase recognition target) sites that, following insertion of the fragment into the chromosome, allow excision of the antibiotic-resistance cassette via the activity of the site-specific Flp recombinase. The excision step leaves behind a "scar" sequence comprising an FRT site and flanking primer annealing sequences. Removal of the cassette minimizes undesired perturbations on the expression of neighboring genes. Even so, polarity effects can result from the occurrence of stop codons within, or downstream of, the scar sequence. These problems can be avoided by the appropriate choice of the template and by designing primers so that the reading frame of the target gene is maintained past the deletion end point. This protocol is optimized for use with Salmonella enterica and Escherichia coli.es
dc.description.sponsorshipAgence Nationale de la Recherche ANR-15-CE11-0024-03es
dc.formatapplication/pdfes
dc.format.extent11 p.es
dc.language.isoenges
dc.publisherCold Spring Harbor Laboratory Presses
dc.relation.ispartofCold Spring Harbor Protocols, 2023 (9), 628-637.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleRecombineering 101: Making an in-Frame Deletion Mutantes
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Genéticaes
dc.relation.projectIDANR-15-CE11-0024-03es
dc.relation.publisherversionhttps://doi.org/10.1101/pdb.prot107856es
dc.identifier.doi10.1101/pdb.prot107856es
dc.journaltitleCold Spring Harbor Protocolses
dc.publication.volumen2023es
dc.publication.issue9es
dc.publication.initialPage628es
dc.publication.endPage637es
dc.contributor.funderAgence Nationale de la Recherche. Francees

FicherosTamañoFormatoVerDescripción
Recombineering 101.pdf638.1KbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional