Mostrar el registro sencillo del ítem

Artículo

dc.creatorLiao, Qingbies
dc.creatorFonseca, Nelson J. G.es
dc.creatorCamacho Aguilar, Migueles
dc.creatorPalomares Caballero, Ángeles
dc.creatorMesa Ledesma, Francisco Luises
dc.creatorQuevedoTeruel, Óscares
dc.date.accessioned2023-09-14T12:41:09Z
dc.date.available2023-09-14T12:41:09Z
dc.date.issued2023
dc.identifier.citationLiao, Q., Fonseca, N.J.G., Camacho Aguilar, M., Palomares Caballero, Á., Mesa Ledesma, F.L. y QuevedoTeruel, Ó. (2023). Ray-Tracing Model for Generalized Geodesic-Lens Multiple-Beam Antennas. IEEE Transactions on Antennas and Propagation, 71 (3), 2640-2651. https://doi.org/10.1109/TAP.2022.3233643.
dc.identifier.issn0018-926Xes
dc.identifier.issn1558-2221es
dc.identifier.urihttps://hdl.handle.net/11441/148933
dc.description.abstractGeodesic-lenses are a compelling alternative to traditional planar dielectric lens antennas, as they are low loss and can be manufactured with a simple mechanical design. However, a general approach for the design and analysis of more advanced geodesic-lens antennas has been elusive, limiting the available tools to rotationally symmetric surfaces. In this article, we present a fast and efficient implementation built on geometrical optics and scalar diffraction theory. A numerical calculation of the shortest ray path (geodesic) using an open-source library helps quantify the phase of the electric field in the lens aperture, while the amplitude is evaluated by applying ray-tube power conservation theory. The Kirchhoff-Fresnel diffraction formula is then employed to compute the far field of the lens antenna. This approach is validated by comparing the radiation patterns of a transversely compressed geodesic Luneburg lens (elliptical base instead of circular) with the ones computed using commercial full-wave simulators, demonstrating a substantial reduction in computational resources. The proposed method is then used in combination with an optimization procedure to study possible compact alternatives of the geodesic Luneburg lens with size reduction in both the transverse and vertical directions.es
dc.description.sponsorshipMinisterio de Ciencia e Innovación PID2020-116739GB-I00es
dc.description.sponsorshipOffice of Naval Research N62909-20-1-2040es
dc.formatapplication/pdfes
dc.format.extent12 p.es
dc.language.isoenges
dc.publisherIEEEes
dc.relation.ispartofIEEE Transactions on Antennas and Propagation, 71 (3), 2640-2651.
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectGeodesic-lenseses
dc.subjectLens antennases
dc.subjectNon-euclidean transformation opticses
dc.subjectParallel plate waveguides (PPWs)es
dc.subjectRay tracinges
dc.titleRay-Tracing Model for Generalized Geodesic-Lens Multiple-Beam Antennases
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Electrónica y Electromagnetismoes
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Física Aplicada Ies
dc.relation.projectIDPID2020-116739GB-I00es
dc.relation.projectIDN62909-20-1-2040es
dc.relation.publisherversionhttps://dx.doi.org/10.1109/TAP.2022.3233643es
dc.identifier.doi10.1109/TAP.2022.3233643es
dc.journaltitleIEEE Transactions on Antennas and Propagationes
dc.publication.volumen71es
dc.publication.issue3es
dc.publication.initialPage2640es
dc.publication.endPage2651es
dc.contributor.funderMinisterio de Ciencia e Innovación (MICIN). Españaes
dc.contributor.funderOffice of Naval Research (ONR). United Stateses

FicherosTamañoFormatoVerDescripción
Ray-Tracing Model.pdf3.644MbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Atribución 4.0 Internacional