Por motivos de mantenimiento se ha deshabilitado el inicio de sesión temporalmente. Rogamos disculpen las molestias.
Artículo
The Schur degree of additive sets
Autor/es | Eliahou, Shalom
Revuelta Marchena, María Pastora |
Departamento | Universidad de Sevilla. Departamento de Matemática Aplicada I (ETSII) |
Fecha de publicación | 2021-05 |
Fecha de depósito | 2022-07-18 |
Publicado en |
|
Resumen | Let (G, +) be an abelian group. A subset of G is sumfree if it contains no elements x, y, z such that x+y = z. We extend this concept by introducing the Schur degree of a subset of G, where Schur degree 1 corresponds to ... Let (G, +) be an abelian group. A subset of G is sumfree if it contains no elements x, y, z such that x+y = z. We extend this concept by introducing the Schur degree of a subset of G, where Schur degree 1 corresponds to sumfree. The classical inequality S(n) ≤ Rn(3)−2, between the Schur number S(n) and the Ramsey number Rn(3) = R(3, . . . , 3), is shown to remain valid in a wider context, involving the Schur degree of certain subsets of G. Recursive upper bounds are known for Rn(3) but not for S(n) so far. We formulate a conjecture which, if true, would fill this gap. Indeed, our study of the Schur degree leads us to conjecture S(n) ≤ n(S(n − 1) + 1) for all n ≥ 2. If true, it would yield substantially better upper bounds on the Schur numbers, e.g. S(6) ≤ 966 conjecturally, whereas all is known so far is 536 ≤ S(6) ≤ 1836. |
Cita | Eliahou, S. y Revuelta Marchena, M.P. (2021). The Schur degree of additive sets. Discrete Mathematics, 344 (112332) |
Ficheros | Tamaño | Formato | Ver | Descripción |
---|---|---|---|---|
The Schur degree of additive ... | 425.0Kb | [PDF] | Ver/ | |