
Discrete Mathematics 344 (2021) 112332
Contents lists available at ScienceDirect

DiscreteMathematics

journal homepage: www.elsevier.com/locate/disc

The Schur degree of additive sets
S. Eliahou a,b,∗, M.P. Revuelta c

a Univ. Littoral Côte d’Opale, UR 2597 - LMPA - Laboratoire de Mathématiques Pures et Appliquées Joseph
Liouville, F-62100 Calais, France
b CNRS, FR2037, France
c Departamento de Matemática Aplicada I, Universidad de Sevilla, Avenida de la Reina Mercedes 4, C.P. 41012 Sevilla, Spain

a r t i c l e i n f o

Article history:
Received 21 October 2020
Received in revised form 22 January 2021
Accepted 25 January 2021
Available online 12 February 2021

Keywords:
Sumfree
Schur numbers
Ramsey numbers
Discrete derivative
Minors

a b s t r a c t

Let (G, +) be an abelian group. A subset of G is sumfree if it contains no elements x, y, z
such that x+y = z. We extend this concept by introducing the Schur degree of a subset of
G, where Schur degree 1 corresponds to sumfree. The classical inequality S(n) ≤ Rn(3)−2,
between the Schur number S(n) and the Ramsey number Rn(3) = R(3, . . . , 3), is shown
to remain valid in a wider context, involving the Schur degree of certain subsets of
G. Recursive upper bounds are known for Rn(3) but not for S(n) so far. We formulate a
conjecture which, if true, would fill this gap. Indeed, our study of the Schur degree leads
us to conjecture S(n) ≤ n(S(n− 1)+ 1) for all n ≥ 2. If true, it would yield substantially
better upper bounds on the Schur numbers, e.g. S(6) ≤ 966 conjecturally, whereas all is
known so far is 536 ≤ S(6) ≤ 1836.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

For a, b ∈ Z, let [a, b] = {z ∈ Z | a ≤ z ≤ b} and [a, ∞[ = {z ∈ Z | a ≤ z} denote the integer intervals they span.
Denote N = {0, 1, 2, . . . } and N+ = N \ {0}.

A subset of Z is sumfree if it contains no elements x, y, z such that x+ y = z. The problem of partitioning [1,N] into as
few sumfree parts as possible was initiated by Schur [11]. Given n ∈ N+, Schur established the existence of a number S(n)
such that [1,N] can be partitioned into n sumfree parts if and only if N ≤ S(n). The S(n) are called the Schur numbers and,
despite more than a century in existence, remain poorly understood at the time of writing. Their only currently known
values are(

S(1), S(2), S(3), S(4), S(5)
)

= (1, 4, 13, 44, 160). (1)

See Section 5.2 for more details. In his paper, Schur proved the following upper bound and recursive lower bound on the
S(n) for n ≥ 2, namely

3S(n − 1) + 1 ≤ S(n) ≤ n!e, (2)

leading in particular to S(n) ≥ (3n
− 1)/2 for all n ≥ 2.
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For n ≥ 1, the n-color Ramsey number Rn(3) = R(3, . . . , 3) denotes the smallest N such that, for any n-coloring of
he edges of the complete graph KN on N vertices, there is a monochromatic triangle. See [10] for an extensive dynamic
urvey on this topic. Only three of the numbers Rn(3) are currently known, namely(

R1(3), R2(3), R3(3)
)

= (3, 6, 17). (3)

s for n = 4, the presently known bounds are 51 ≤ R4(3) ≤ 62. It is conjectured in [14] that R4(3) equals 51. Similarly to
he upper bound in (2), it was shown in [8] that Rn(3) ≤ n!e + 1 for all n ≥ 1. This bound has later been improved to

Rn(3) ≤ n!(e − 1/6) + 1

or all n ≥ 4 in [15]. See also [4], where the conjecture R4(3) = 51 is shown to imply Rn(3) ≤ n!(e−5/8)+1 for all n ≥ 4.
In fact, there is a well known relationship between the Schur and the Ramsey numbers, namely

S(n) ≤ Rn(3) − 2. (4)

ee e.g. [12]. That is, if the set [1,N] admits a partition into n sumfree parts, then N ≤ Rn(3) − 2.
We shall show here that (4) holds in a more general context. Let (G, +) be an abelian group. As in Z, a subset of G is

umfree if it contains no elements x, y, z such that x + y = z. Given a finite sequence A = (a1, . . . , aN ) in G, let us denote
y Â the set of all block sums ai + · · · + aj of A, where 1 ≤ i ≤ j ≤ N . For instance, if A = (1, . . . , 1) of length N in G = Z,
hen Â = [1,N].

In this paper, we are concerned with partitioning subsets of G of the form Â into as few sumfree parts as possible. As
ust noted, this includes Schur’s original problem for the integer intervals [1,N]. Our extension of (4) to this more general
etting states that if A is a sequence in G of length |A| = N and if Â can be covered by n sumfree parts, then N ≤ Rn(3) − 2.
Currently, the best available theoretical upper bound on S(n) for n ≥ 4 is the one provided by (4). While the Ramsey

umbers Rn(3) satisfy the well known recursive upper bound

Rn(3) ≤ n(Rn−1(3) − 1) + 2

or all n ≥ 2 [8, Theorem 6, p. 6], no similar statement is known yet for the S(n). Here we fill this gap, at least conjecturally,
s an outcome of our study of sumfree partitions of sets of the form Â. Indeed, as we shall see, that study leads us to
onjecture the following recursive upper bound, for all n ≥ 2:

S(n) ≤ n(S(n − 1) + 1). (5)

The contents of this paper are as follows. In Section 2, we introduce the Schur degree and the basic notions and
tools needed in the sequel. In Section 3, we prove initial properties of the Schur degree and illustrate them with selected
examples in Z. Our main result, an extension of (4) to sets Â bounding their Schur degree with the Ramsey numbers Rn(3),
is proved in Section 4. The material developed so far leads us in Section 5 to the conjectural recursive upper bound (5),
a substantial would-be improvement over (4).

2. Basic notions and tools

Here is the main notion introduced and studied in this paper.

Definition 2.1. Let (G, +) be an abelian group. Let X ⊆ G be a subset. We define the Schur degree of X , denoted sdeg(X),
as the smallest n ≥ 1 such that X can be covered by n sumfree subsets. If no such n exists, we set sdeg(X) = ∞.

For instance, sdeg(X) = 1 if and only if X is sumfree, whereas sdeg(X) = ∞ whenever 0 ∈ X , as {0} is not sumfree. As
another instance, in N we have

sdeg([1, S(n)]) = n, sdeg([1, S(n) + 1]) = n + 1 (6)

by definition of S(n). Equivalently, sdeg([1,N]) ≤ n ⇐⇒ N ≤ S(n).
Measuring the Schur degree of most subsets is likely to remain an extremely difficult task, even for the integer intervals

[1,N] as witnessed by the still highly mysterious Schur numbers S(n). In this paper, we focus on subsets of a certain form
Â, generalizing the intervals [1,N] and introduced below.

2.1. Block sums

Let (G, +) be an abelian group. Let A = (a1, . . . , aN ) be a finite sequence in G. We denote by |A| = N its length and by
σ (A) =

∑
i ai the sum of its elements.

A block in A is any nonempty subsequence of consecutive elements of A. That is, any subsequence of the form

B = (ai, . . . , aj)

for some 1 ≤ i ≤ j ≤ N . A block sum in A is a sum σ (B) where B is any block in A, i.e. any element in G of the form
ai + · · · + aj for some 1 ≤ i ≤ j ≤ N .
2
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otation 2.2. Let A = (a1, . . . , aN ) be a sequence in G. We denote by

Â = {σ (B) | B is a block in A},

he set of block sums in A.

For instance, if A = (1, . . . , 1) of length N in Z, then Â = [1,N] as noted above. In this paper, we initiate the study of
he Schur degree of subsets of the form Â for finite sequences A in G, with the hope to shed some light on the basic case
[1,N] in Z. Our main result is Theorem 4.1, an extension of (4) to this context.

2.2. Minors

We show here that the association A ↦→ Â is monotone with respect to taking minors, as defined below.

Definition 2.3. Let A = (a1, . . . , aN ) be a sequence in the abelian group G.
• An elementary contraction of A is any sequence A obtained by replacing a block B in A by its sum σ (B). That is, if

= (ai, . . . , aj) for some 1 ≤ i ≤ j ≤ N , then

A = (a1, . . . , ai−1, σ (B), aj+1, . . . , aN ).

• A contraction of A is any sequence obtained from A by successive elementary contractions.

For instance, let A = (1, 2, 3, 4). Then (3, 3, 4), (6, 4) and (3, 7) are contractions of A, the first two ones being
elementary. See also [1].

Definition 2.4. Let A = (a1, . . . , aN ) be a sequence in G. A minor of A is either a block B in A or a contraction A of A.

roposition 2.5. Let G be an abelian group. Let A be a finite sequence in G. If B is a minor of A, then B̂ ⊆ Â.

roof. The stated inclusion clearly holds if B is a block in A, since any block sum of B is a block sum of A. If B is an
elementary contraction of A then again, any block sum of B is a block sum of A. Therefore, the same holds if B is obtained
from A by successive elementary contractions. □

2.3. The discrete derivative

For subsets X, Y of a group (G, +), their sumset is X + Y = {x + y | x ∈ X, y ∈ Y }. Thus, X is sumfree if and only if
(X + X) ∩ X = ∅; equivalently, if and only (X − X) ∩ X = ∅, where −X = {−x | x ∈ X}.

In this section, for X ⊂ Z finite, we relate X − X with a subset of the form Â for a certain sequence A closely linked to
. This is done with a variant of the discrete derivative, associating to a subset X ⊂ Z its sequence of successive jumps.

See also [1].

Definition 2.6. Let X ⊂ Z be a finite subset. Let the elements of X be x0 < x1 < · · · < xr . The discrete derivative of X is
the sequence

∆X = (x1 − x0, x2 − x1, . . . , xr − xr−1)

of successive jumps in X .

The interesting point for our purposes here is that X − X can be read off from the block sums of ∆X .

Proposition 2.7. Let X ⊂ Z be a nonempty finite subset, and let A = ∆X. Then

Â = (X − X) ∩ N+.

Proof. Denote by x0 < x1 < · · · < xr the elements of X . Then

(X − X) ∩ N+ = {xt − xs | 0 ≤ s < t ≤ r}.

Let A = ∆X = (a1, . . . , ar ), where ai = xi − xi−1 for 1 ≤ i ≤ r . For any indices 0 ≤ s < t ≤ r , let B = (as+1, . . . , at ) be the
corresponding block in A. Then

xt − xs = σ (B). (7)

Indeed, σ (B) =
∑t a =

∑t (x − x ) = x − x . Hence x − x ∈ Â. This concludes the proof of the proposition. □
i=s+1 i i=s+1 i i−1 t s t s

3
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The next proposition bounds the Schur degree of certain subsets Â in Z. We start with a lemma.

Lemma 2.8. Let X be a sumfree subset of [1,N] for some N ∈ N+. Let A = ∆(X). Then Â ⊆ [1,N − 1] \ X.

Proof. Denote X = {x0, . . . , xn} with 1 ≤ x0 < x1 < · · · < xn ≤ N . Then A = (a1, . . . , an) where ai = xi − xi−1 for all
1 ≤ i ≤ n. Let s ∈ Â. Then

s = ai + · · · + aj = xj − xi−1

for some 1 ≤ i ≤ j ≤ n. Therefore 1 ≤ s ≤ N −1, and s /∈ X since s+ xi−1 = xj and X is sumfree. That is, s ∈ [1,N −1] \X ,
as desired. □

Proposition 2.9. Let N ≥ 1, and let X1⊔. . .⊔Xn be a sumfree partition of [1,N]. Let Ai = ∆(Xi) for all i. Then sdeg(Âi) ≤ n−1.

Proof. Let i ∈ [1, n]. It follows from Lemma 2.8 that Âi is contained in

X1 ⊔ . . . ⊔ Xi−1 ⊔ Xi+1 ⊔ . . . ⊔ Xn.

This induces a partition of Âi into at most n − 1 sumfree parts. □

3. Basic properties of the Schur degree

In this section, we compute the Schur degree in a few examples after giving its first basic properties. Let us start with
the monotonicity of the Schur degree with respect to set inclusion.

Lemma 3.1. Let G be an abelian group. If X ⊆ Y ⊆ G then sdeg(X) ≤ sdeg(Y ).

Proof. Let n = sdeg(Y ). If n = ∞, we are done. Otherwise, Y admits a partition into n sumfree parts, inducing a partition
of X into at most n sumfree parts. □

Here is a useful consequence.

Proposition 3.2. Let A be a finite sequence in the abelian group G. If B is a minor of A, then sdeg(B̂) ≤ sdeg(Â).

Proof. We have B̂ ⊆ Â by Proposition 2.5. Now apply Lemma 3.1. □

Note also that if A′ denotes the reverse sequence of A, then sdeg(Â) = sdeg(Â′). Indeed, A and A′ have identical block
sums, i.e. Â = Â′.

Our next proposition shows that the Schur degree is also monotone with respect to inverse images under group
morphisms. We start with a lemma.

Lemma 3.3. Let G1,G2 be abelian groups and let f :G1 → G2 be a morphism. Let Y ⊆ G2. If Y is sumfree then f −1(Y ) also is.

Proof. Assume that f −1(Y ) is not sumfree. Then there exist x1, x2, x3 ∈ f −1(Y ) such that x1 + x2 − x3 = 0. Hence
f (x1) + f (x2) − f (x3) = 0, implying that Y is not sumfree either. □

Proposition 3.4. Let G1,G2 be abelian groups and let f :G1 → G2 be a morphism. Let Y ⊆ G2. Then sdeg(f −1(Y )) ≤ sdeg(Y ).

Proof. Let n = sdeg(Y ). Then there exist sumfree subsets Y1, . . . , Yn ⊆ Y such that

Y = Y1 ⊔ . . . ⊔ Yn.

Therefore f −1(Y ) = f −1(Y1) ⊔ . . . ⊔ f −1(Yn), and f −1(Yi) is sumfree for all i by Lemma 3.3. Hence sdeg(f −1(Y )) ≤ n. □

3.1. Examples

As an illustration, we determine the Schur degree of a few selected subsets of Z or groups containing Z. In some cases,
the results were obtained using specially written functions in Mathematica 10 [13].

Example 3.5. Let B = [1, 2] ∪ [m,m + 4]. We claim that

sdeg(B) = 3

for all m ≥ 3. Indeed, let A = (1, 1,m, 1, 1). Then Â = B, and sdeg(Â) ≥ 3 by Corollary 4.2 in the next section. Equality is
obvious here.
4
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xample 3.6. Let A = (2i)0≤i≤13. Then here also, sdeg(Â) = 3. But with one more term, i.e. for B = (2i)0≤i≤14, it is no
onger the case as sdeg(B̂) = 4.

Example 3.7. This example is an application of Proposition 3.4. Let x, y be positive integers, and let A = (x, y, . . . , x, y)
be the 2-periodic sequence of length 14. Then sdeg(Â \ {7x + 7y}) = 3. Indeed, here are three sumfree classes covering
that set:

C1 : x, y, 2x + 2y, 5x + 5y, 7x + 6y, 6x + 7y.
C2 : x + y, 2x + y, x + 2y, 6x + 5y, 5x + 6y, 6x + 6y.
C3 : 3x + 2y, 2x + 3y, 3x + 3y, 4x + 3y, 3x + 4y, 4x + 4y, 5x + 4y, 4x + 5y.

Mapping x, y to 1 yields a sumfree 3-partition of [1, 13]. In fact, the partition C1, C2, C3 was constructed to do exactly
hat, using Proposition 3.4.

xample 3.8. For each integer x ≥ 8, one has

sdeg([1, 6] ∪ [x, x + 13]) = 3.

ndeed, this is shown by the following sumfree 3-partition of this set:

C1 : 1, 6, x, x + 3, x + 7, x + 10.
C2 : 2, 5, x + 1, x + 2, x + 8, x + 9.
C3 : 3, 4, x + 4, x + 5, x + 6, x + 11, x + 12, x + 13.

owever, adjoining 7 to it, one has sdeg([1, 7] ∪ [x, x + 13]) = 4.

xample 3.9. Let G be an abelian group containing Z and let x ∈ G \ Z. Then

sdeg({1, 2} ∪ [x, x + 3]) = 2,
sdeg({1, 2} ∪ [x, x + 4]) = 3.

ndeed, as easily seen, the only sumfree 2-coloring of {1, 2} ∪ [x, x + 3] is given by the two color classes {1, x, x + 3} and
2, x + 1, x + 2}. Hence, it is impossible to add x + 4 to either class while maintaining the sumfree property.

Example 3.10. Let G be an abelian group containing Z. Let x ∈ G \Z be such that {1, x} is Z-free, i.e. spans a free-abelian
subgroup of rank 2 of G. Then

sdeg([1, 6] ∪ (x + N)) = 3.

Indeed, consider the 3-partition of Example 3.8 and extend it periodically as follows:

C1 : 1, 6, x, x + 3, x + 7, x + 10, x + 14, x + 17, . . .
C2 : 2, 5, x + 1, x + 2, x + 8, x + 9, x + 15, x + 16, . . .
C3 : 3, 4, x + 4, x + 5, x + 6, x + 11, x + 12, x + 13, x + 18, x + 19, x + 20, . . .

One can also extend it towards the left. Thus in fact, sdeg([1, 6] ∪ (x + Z)) = 3. But here again, adjoining 7 to it, one has
sdeg([1, 7] ∪ (x + Z)) = 4.

4. Comparison with Rn(3)

Recall that, for n ≥ 1, the Ramsey number Rn(3) denotes the smallest N such that, for any n-coloring of the edges of
the complete graph KN , there is a monochromatic triangle. There is a well known relationship between the Schur and the
Ramsey numbers, namely

S(n) ≤ Rn(3) − 2. (8)

Using the Schur degree of [1,N], this may be expressed as follows:

N ≥ Rn(3) − 1 H⇒ sdeg([1,N]) ≥ n + 1.

Theorem 4.1 below extends this relationship to the Schur degree of Â for any finite sequence A in an abelian group.

Theorem 4.1. Let G be an abelian group. Let A be a finite sequence in G. If |A| ≥ Rn(3) − 1 then sdeg(Â) ≥ n + 1.
5
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roof. Let N = |A| ≥ Rn(3) − 1. Denote b(i, j) = xi + · · · + xj−1 for all 1 ≤ i < j ≤ N + 1. Then

Â = {b(i, j) | 1 ≤ i < j ≤ N + 1}.

et χ : Â → [1, n] be an arbitrary n-coloring of Â. Consider the complete graph KN+1 = (V , E) on the vertex set
= [1,N + 1]. Then χ induces an n-coloring χ ′: E → [1, n] on E defined by

χ ′({i, j}) = χ (b(i, j))

or all 1 ≤ i < j ≤ N +1. Since N +1 ≥ Rn(3), there is a monochromatic triangle under χ ′ in KN+1, say with vertices i, j, h
or some 1 ≤ i < j < h ≤ N + 1. This yields, under χ , the monochromatic subset

{b(i, j), b(j, h), b(i, h)} ⊂ Â.

ince b(i, j) + b(j, h) = b(i, h), the corresponding color class in Â is not sumfree. Since χ was an arbitrary n-coloring of Â,
we conclude that sdeg(Â) ≥ n + 1. □

In particular, for n = 2, 3 and 4, one has the following consequences.

Corollary 4.2. Let A be a sequence in an abelian group G. If |A| ≥ 5, then sdeg(Â) ≥ 3. If |A| ≥ 16, then sdeg(Â) ≥ 4. If
|A| ≥ 61, then sdeg(Â) ≥ 5.

Proof. Follows from Theorem 4.1 and the well-known values R2(3) = 6, R3(3) = 17 and current upper bound
R4(3) ≤ 62. □

The converse of Theorem 4.1 does not hold in general. For instance, for n = 3 and A = (1, . . . , 1) of length 14 in Z, by
(6) we have sdeg(Â) ≥ 4 since Â = [1, 14] and S(3) = 13, yet |A| ≤ R3(3) − 2 = 15. However, here is a partial converse
showing that Theorem 4.1 is best possible. First observe that if |A| = N , then

|Â| ≤ 1 + 2 + · · · + N =

(
N + 1

2

)
.

The case of equality, where all block sums in A are pairwise distinct, is of interest. It occurs for instance if A is Z-free,
i.e. generates a subgroup isomorphic to ZN .

Theorem 4.3. Let A be a finite sequence in an abelian group G. If |A| ≤ Rn(3) − 2 and A is Z-free, then sdeg(Â) ≤ n.

Proof. Denote A = {x1, . . . , xN}. Reusing the notation introduced in the proof of Theorem 4.1, we have

Â = {b(i, j) | 1 ≤ i < j ≤ N + 1}.

Again, let KN+1 = (V , E) be the complete graph on the vertex set V = [1,N + 1]. Consider the map f : E → Â defined by

f ({i, j}) = b(i, j) (9)

for all 1 ≤ i < j ≤ N + 1. Since |E| = |Â| and the b(i, j) are pairwise distinct by assumption, the map f is a bijection. Since
N +1 ≤ Rn(3)−1, there is an n-coloring χ : E → [1, n] without any monochromatic triangle. Consider the composed map

χ ◦ f −1: Â −→ [1, n].

We claim that under this n-coloring of Â, every color class is sumfree. Indeed, let u1, u2, u3 be any triple in Â satisfying
u1 +u2 = u3. We claim that it cannot be monochromatic under χ ◦ f −1. We have u1 = b(i1, j1), u2 = b(i2, j2), u3 = b(i3, j3)
for some indices i1 < j1, i2 < j2, i3 < j3 in [1,N + 1]. The relation u1 + u2 = u3 then becomes

(xi1 + · · · + xj1−1) + (xi2 + · · · + xj2−1) = (xi3 + · · · + xj3−1).

We may freely assume i1 ≤ i2. Since the sequence x1, . . . , xN is Z-free by hypothesis, the above equality is only possible
if i1 = i3, j1 = i2 and j2 = j3. That is, if the three edges {i1, j1}, {i2, j2}, {i3, j3} form a triangle in KN+1. Since that triangle
is not monochromatic under χ , the triple u1, u2, u3 = u1 + u2 in Â is not monochromatic under χ ◦ f −1 either, since
f −1(uk) = {ik, jk} for k = 1, 2, 3 by (9). Hence sdeg(Â) ≤ n, as claimed. □

Remark 4.4. The hypothesis that A be Z-free is not strictly needed in Theorem 4.3. For instance, let
A = (1, 3, 32, . . . , 3N−1). Even though A is not Z-free, it is still true that if N ≤ Rn(3) − 2 then sdeg(Â) ≤ n. This derives
from the above proof and the fact that the only triples u, v, u + v in Â are those of the form b(i, j), b(j, h), b(i, h).
6
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. A recursive upper bound on S(n)?

The Ramsey numbers admit well-known recursive upper bounds, including

Rn(3) ≤ n(Rn−1(3) − 1) + 2 (10)

8, Theorem 6, p. 6]. To the best of our knowledge, no recursive upper bounds are known yet for the Schur numbers.
e propose here a conjecture which, if true, would fill this gap. Let us start with an upper bound on S(n) involving the
umber L(n) defined below.

efinition 5.1. Let n ≥ 2. We define L(n) to be the smallest positive integer with the following property: for every
equence A in N+ of length |A| = L(n) and average µ(A) ≤ n, one has sdeg(Â) ≥ n.

xample 5.2. Let n = 2. Then L(2) = 2. Indeed, up to symmetry, the only sequences A to consider are (1, 1), (1, 2), (1, 3),
2, 2). This yields Â = {1, 2}, {1, 2, 3}, {1, 3, 4}, {2, 4}, respectively. As none is sumfree, we have sdeg(Â) ≥ 2 in all cases,
s required.

Let us now establish the existence of L(n) in full generality.

roposition 5.3. For all n ≥ 2, the number L(n) exists and satisfies

S(n − 1) + 1 ≤ L(n) ≤ Rn−1(3) − 1. (11)

roof. If A is any sequence in N+ of length |A| = Rn−1(3) − 1, then irrespective of its average µ(A), we have sdeg(Â) ≥ n
y Theorem 4.1, as desired. Thus L(n) exists and is bounded above by Rn−1(3)−1. On the other hand, let A = (1, . . . , 1) of
ength L(n) and average µ(A) = 1. Then Â = [1, L(n)], whence sdeg([1, L(n)]) ≥ n by hypothesis. Hence L(n) ≥ S(n−1)+1,
y definition of S(n − 1). □

Here is our upper bound on S(n) involving L(n).

heorem 5.4. We have S(n) ≤ nL(n) for all n ≥ 2.

roof. We claim that [1, nL(n) + 1] has Schur degree at least n + 1. This will imply nL(n) + 1 ≥ S(n) + 1, the desired
onclusion. Assume for a contradiction that nL(n) + 1 ≤ S(n). Let then

[1, nL(n) + 1] = X1 ⊔ . . . ⊔ Xn (12)

e a sumfree partition. By the pigeonhole principle, one of the Xi’s has cardinality at least L(n) + 1, say |X1| ≥ L(n) + 1.
et A = ∆(X1). Then |A| ≥ L(n), and sdeg(Â) ≤ n − 1 by Proposition 2.9. Let B be a block of A of length |B| = L(n). Since B
s a minor of A, Proposition 2.5 implies

sdeg(B̂) ≤ sdeg(Â) ≤ n − 1. (13)

et s = min(X1), t = max(X1). Then σ (A) = t − s by (7), and t − s ≤ nL(n) since X1 ⊆ [1, nL(n) + 1] by (12). Hence
(B) ≤ nL(n) and so µ(B) = σ (B)/L(n) ≤ n. Since |B| = L(n), the defining property of L(n) implies sdeg(B̂) ≥ n,
ontradicting (13). This concludes the proof of the theorem. □

emark 5.5. Proposition 5.3 and Theorem 5.4 imply the upper bound

S(n) ≤ n(Rn−1(3) − 1)

or all n ≥ 2. However, this also follows by combining (8) and (10), namely S(n) ≤ Rn(3)−2 and Rn(3) ≤ n(Rn−1(3)−1)+2.

.1. Conjectures

Given n ≥ 2, what is the exact value of L(n)? It follows from Proposition 5.3 that

if S(n − 1) + 1 = Rn−1(3) − 1 then L(n) = S(n − 1) + 1. (14)

his occurs for n = 2 and 3, since by (1) and (3), we have (S(1), R1(3)) = (1, 3) and (S(2), R2(3)) = (4, 6). Thus L(2) = 2
s already seen, and L(3) = 5. As for n = 4, we have

(S(3), R3(3)) = (13, 17).

roposition 5.3 then implies 14 ≤ L(4) ≤ 16. We conjecture that L(4) = 14 and, more generally, that the lower bound on
(n) in (11) is optimal.
7



S. Eliahou and M.P. Revuelta Discrete Mathematics 344 (2021) 112332

a

R

t
f

e
A

c

Table 1
S(n) ≤ n(S(n − 1) + 1) for 2 ≤ n ≤ 5.
n S(n) n(S(n − 1) + 1)

1 1
2 4 4
3 13 15
4 44 56
5 160 225

Conjecture 5.6. Let n ≥ 2. Then L(n) = S(n − 1) + 1. That is, every sequence A in N+ of length |A| = S(n − 1) + 1 and
verage µ(A) ≤ n satisfies sdeg(Â) ≥ n.

As shown below, this has very interesting consequences for the Schur numbers themselves.
We have seen above that Conjecture 5.6 holds for n = 2 and 3. Does it hold for n = 4? That is, is it true that for

any sequence A in N+ of length 14 and average µ(A) ≤ 4, one has sdeg(Â) ≥ 4? We do not know yet. In any case, some
hypothesis bounding µ(A) from above cannot be completely dispensed of. For instance, consider the sequence

A = (23, 375, 23, 209, 209, 60, 60, 60, 23, 1, 60, 261, 209, 23)

of length 14. Then |Â| = 83, and sdeg(Â) = 3 as can be verified. But this does not contradict Conjecture 5.6 for n = 4,
since µ(A) = 114 here. Such exotic examples in length 14 are hard to come by. This one was found with a semi-random
search by computer. See also Example 3.6 with the powers of 2, also of length 14 but with a still higher average.

Here is a worthwhile consequence of Conjecture 5.6 for the Schur numbers, potentially the first known recursive upper
bound for them.

Conjecture 5.7. S(n) ≤ n(S(n − 1) + 1) for all n ≥ 2.

This directly follows from Theorem 5.4 and Conjecture 5.6. Table 1 shows that Conjecture 5.7 actually holds for
2 ≤ n ≤ 5.

5.2. Comparisons

Let us now compare this conjectural upper bound on S(n) with the general currently known ones given by (8) and
(10), namely

S(n) ≤ Rn(3) − 2, Rn(3) ≤ n(Rn−1(3) − 1) + 2. (15)

The currently known bounds on R4(3) are 51 ≤ R4(3) ≤ 62, established in [3] and [6], respectively. Starting with
4(3) ≤ 62, the bounds (15) yield

S(5) ≤ R5(3) − 2 ≤ 305, S(6) ≤ R6(3) − 2 ≤ 1836.

• For n = 4, the equality S(4) = 44 was established by computer [2]. But, as far as theory is concerned, nothing better
han S(4) ≤ R4(3) − 2 ≤ 60 is currently known. A proof of Conjecture 5.6 for n = 4 would yield S(4) ≤ 56, still far away
rom the true value 44, yet a little closer to it.

• For n = 5, the bound S(5) ≥ 160 was first established in [5], with equality later conjectured to hold in [7]. Indeed, the
xact value S(5) = 160 has recently been established by massive computer calculations with a certified SAT solver [9].
proof of Conjecture 5.6 for n = 5, namely that every sequence A in N+ such that |A| = 45 and µ(A) ≤ 5 satisfies

sdeg(Â) ≥ 5, would imply S(5) ≤ 225. Here again, it would still be far away from the true value, yet it would provide a
marked improvement over the currently best known theoretical upper bound S(5) ≤ 305.

• For n = 6, on the one hand we have S(6) ≥ 536 by [7], while at the time of writing, the best known upper bound is
again the one given above, namely

S(6) ≤ R6(3) − 2 ≤ 1836.

By sharp contrast, using the true value S(5) = 160, Conjecture 5.7 implies the following substantial improvement.

Conjecture 5.8. S(6) ≤ 966.

• As for n = 7, Conjectures 5.7 and 5.8 yield the conjectural upper bound

S(7) ≤ 6769,

to be compared with the known ones given by (15), namely S(7) ≤ R7(3) − 2 ≤ 12859. For a lower bound, the best we
urrently have is S(7) ≥ 1680, by [7] again.
8
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