Mostrar el registro sencillo del ítem

Artículo

dc.creatorCamacho Aguilar, Migueles
dc.creatorTao Gonges
dc.creatorBenjamin Sprenges
dc.creatorIñigo Liberales
dc.creatorNader Enghetaes
dc.creatorJeremy N. Mundayes
dc.date.accessioned2022-06-08T07:57:46Z
dc.date.available2022-06-08T07:57:46Z
dc.date.issued2022-06-03
dc.identifier.citationCamacho Aguilar, M., Tao Gong, , Benjamin Spreng, , Iñigo Liberal, , Nader Engheta, y Jeremy N. Munday, (2022). Engineering Casimir interactions with epsilon-near-zero materials. Physical Review A, 105 (6), L061501.
dc.identifier.issn1050-2947es
dc.identifier.urihttps://hdl.handle.net/11441/134194
dc.description.abstractIn this paper, we theoretically demonstrate the tunability of the Casimir force both in sign and magnitude between parallel plates coated with dispersive materials. We show that this force, existing between uncharged plates, can be tuned by carefully choosing the value of the plasma frequency (i.e., the epsilon-near-zero frequency) of the coating in the neighborhood of the resonance frequency of the cavity. The coating layer enables a continuous variation of the force between four limiting values when a coating is placed on each plate. We explore the consequences of such variation when pairs of electric and magnetic conductors (i.e., low and high impedance surfaces) are used as substrates on either side, showing that this continuous variation results in changes in the sign of the force, leading to both stable and unstable conditions, which could find interesting potential applications in nanomechanics, including nanoparticle tweezing.es
dc.description.sponsorshipDefense Advanced Research Program Agency (DARPA) HR00112090084es
dc.description.sponsorshipMCIN/AEI/10.13039/501100011033 PID2020-116739GB-I00es
dc.formatapplication/pdfes
dc.format.extent6 p.es
dc.language.isoenges
dc.publisherAmerican Physical Societyes
dc.relation.ispartofPhysical Review A, 105 (6), L061501.
dc.titleEngineering Casimir interactions with epsilon-near-zero materialses
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Electrónica y Electromagnetismoes
dc.relation.projectIDPID2020-116739GB-I00es
dc.relation.projectIDHR00112090084es
dc.relation.publisherversionhttps://dx.doi.org/10.1103/PhysRevA.105.L061501es
dc.identifier.doi10.1103/PhysRevA.105.L061501es
dc.contributor.groupTIC-112: Microondases
dc.journaltitlePhysical Review Aes
dc.publication.volumen105es
dc.publication.issue6es
dc.publication.initialPageL061501es
dc.contributor.funderDefense Advanced Research Program Agency (DARPA). United Stateses
dc.contributor.funderMinisterio de Ciencia e Innovación (MICIN). Españaes

FicherosTamañoFormatoVerDescripción
PhysRevA.105.L061501.pdf869.6KbIcon   [PDF] Ver/Abrir   Artículo publicado

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Este documento está protegido por los derechos de propiedad intelectual e industrial. Sin perjuicio de las exenciones legales existentes, queda prohibida su reproducción, distribución, comunicación pública o transformación sin la autorización del titular de los derechos, a menos que se indique lo contrario.