Repositorio de producción científica de la Universidad de Sevilla

Partial Latin rectangle graphs and autoparatopism groups of partial Latin rectangles with trivial autotopism groups

Opened Access Partial Latin rectangle graphs and autoparatopism groups of partial Latin rectangles with trivial autotopism groups

Citas

buscar en

Estadísticas
Icon
Exportar a
Autor: Falcón Ganfornina, Raúl Manuel
Stones, Rebecca J.
Departamento: Universidad de Sevilla. Departamento de Matemática Aplicada I
Fecha: 2017
Publicado en: Discrete Mathematics, 340 (6), 1242-1260.
Tipo de documento: Artículo
Resumen: An $r \times s$ partial Latin rectangle $(l_{ij})$ is an $r \times s$ matrix containing elements of $\{1,2,\ldots,n\} \cup \{\cdot\}$ such that each row and each column contain at most one copy of any symbol in $\{1,2,\ldots,n\}$. An entry is a triple $(i,j,l_{ij})$ with $l_{ij} \neq \cdot$. Partial Latin rectangles are operated on by permuting the rows, columns, and symbols, and by uniformly permuting the coordinates of the set of entries. The stabilizers under these operations are called the autotopism group and the autoparatopism group, respectively. We develop the theory of symmetries of partial Latin rectangles, introducing the concept of a partial Latin rectangle graph. We give constructions of $m$-entry partial Latin rectangles with trivial autotopism groups for all possible autoparatopism groups (up to isomorphism) when: (a) $r=s=n$, i.e., partial Latin squares, (b) $r=2$ and $s=n$, and (c) $r=2$ and $s \neq n$.
Cita: Falcón Ganfornina, R.M. y Stones, R.J. (2017). Partial Latin rectangle graphs and autoparatopism groups of partial Latin rectangles with trivial autotopism groups. Discrete Mathematics, 340 (6), 1242-1260.
Tamaño: 547.2Kb
Formato: PDF

URI: http://hdl.handle.net/11441/67852

DOI: 10.1016/j.disc.2017.01.002

Ver versión del editor

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional

Este registro aparece en las siguientes colecciones