Repositorio de producción científica de la Universidad de Sevilla

Formalización de cáculos lógicos en Isabelle/Hol

 

Advanced Search
 
Opened Access Formalización de cáculos lógicos en Isabelle/Hol
Cites
Show item statistics
Icon
Export to
Author: Mateo Ceballos, María Dolores
Director: Hidalgo Doblado, María José
Department: Universidad de Sevilla. Departamento de Ciencias de la Computación e Inteligencia Artificial
Date: 2017-06
Document type: Master's Thesis
Academic Title: Universidad de Sevilla. Máster Universitario en Matemáticas
Abstract: Natural deduction is a sound and complete proof procedure for propositional logic, that is, it only proves valid formulas and it proves every valid formula. In this work we establish the theory of propositional logic, and we prove the soundness and completeness theorems for natural deduction in propositional logic, following the Melving Fitting’s book First-Order Logic and Automated Theorem Proving. We also present a formalization of this theory in Isabelle/HOL. The formalization covers the sintax and semantic of propositional logic, the model existence theorem, and a natural deduction proof calculus together with a proof of soundness and completeness. For this purpose, we introduce Isabelle/HOL system in this work and the main concepts that we use in the above formalization.
Size: 504.8Kb
Format: PDF

URI: http://hdl.handle.net/11441/63232

This work is under a Creative Commons License: 
Attribution-NonCommercial-NoDerivatives 4.0 Internacional

This item appears in the following Collection(s)