Repositorio de producción científica de la Universidad de Sevilla

La infinitud actual de partes del continuo en la Theoria motus abstracti de Leibniz

 

Advanced Search
 
Opened Access La infinitud actual de partes del continuo en la Theoria motus abstracti de Leibniz
Cites

Show item statistics
Icon
Export to
Título alternativo: The actual infinitude of parts of the continuum in Leibniz’s Theoria motus abstracti
Author: Raffo Quintana, Federico
Date: 2016
Published in: THÉMATA: Revista de Filosofía, 53, 289-310.
Document type: Article
Abstract: En la Theoria motus abstracti (TMA) de 1671 Leibniz afirmó, sin introducir mayores precisiones, que en el continuo hay infinitas partes en acto. Algunos exégetas entienden que las partes actuales han de entenderse como ‘indivisibles’. En este trabajo sostendremos que puede defenderse otra interpretación que evita los problemas que tiene la de aquellos intérpretes y que se esclarece sobre la base de los exámenes aritméticos de Leibniz inmediatamente posteriores a la redacción de la TMA. Así, mostraremos que habría un paralelismo entre los exámenes de Leibniz sobre el problema continuo y sobre series infinitas. In his 1671’s Theoria motus abstracti (TMA), Leibniz stated without further precisions that there is an actual infinity of parts in the continuum. Some exegetes hold that the actual parts must be understood as ‘indivisibles’. In this paper we will hold that another interpretation can be defended, which avoids the problems that the other interpretation has, and which is clarified on the basis of Leibniz’s arithmetical exams written immediately after the writing of the TMA. Thus, we will show that there could be a parallelism between Leibniz’ exams on the continuum problem and on infinite series
Cite: Raffo Quintana, F. (2016). La infinitud actual de partes del continuo en la Theoria motus abstracti de Leibniz. THÉMATA: Revista de Filosofía, 53, 289-310.
Size: 524.3Kb
Format: PDF

URI: http://hdl.handle.net/11441/54171

DOI: 10.12795/themata.2016.i53.15

See editor´s version

This work is under a Creative Commons License: 
Attribution-NonCommercial-NoDerivatives 4.0 Internacional

This item appears in the following Collection(s)