Repositorio de producción científica de la Universidad de Sevilla

Motivic Poincaré series, toric singularities and logarithmic Jacobian ideals

Opened Access Motivic Poincaré series, toric singularities and logarithmic Jacobian ideals

Citas

buscar en

Estadísticas
Icon
Exportar a
Autor: Cobo Pablos, Helena
González Pérez, Pedro Daniel
Departamento: Universidad de Sevilla. Departamento de álgebra
Fecha: 2012
Publicado en: Journal of Algebraic Geometry, 21 (3), 495-529.
Tipo de documento: Artículo
Resumen: The geometric motivic Poincaré series of a variety, which was introduced by Denef and Loeser, takes into account the classes in the Grothendieck ring of the sequence of jets of arcs in the variety. Denef and Loeser proved that this series has a rational form. We describe it in the case of an affine toric variety of arbitrary dimension. The result, which provides an explicit set of candidate poles, is expressed in terms of the sequence of Newton polyhedra of certain monomial ideals, which we call logarithmic jacobian ideals, associated to the modules of differential forms with logarithmic poles outside the torus of the toric variety.
Cita: Cobo Pablos, H. y González Pérez, P.D. (2012). Motivic Poincaré series, toric singularities and logarithmic Jacobian ideals. Journal of Algebraic Geometry, 21 (3), 495-529.
Tamaño: 416.7Kb
Formato: PDF

URI: http://hdl.handle.net/11441/47596

DOI: 10.1090/S1056-3911-2011-00567-5

Ver versión del editor

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones