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MOTIVIC POINCARE SERIES, TORIC SINGULARITIES AND LOGARITHMIC
JACOBIAN IDEALS

H. COBO PABLOS AND P.D. GONZALEZ PEREZ

Abstract. The geometric motivic Poincaré series of a variety, which was introduced by Denef and
Loeser, takes into account the classes in the Grothendieck ring of the sequence of jets of arcs in the
variety. Denef and Loeser proved that this series has a rational form. We describe it in the case of
an affine toric variety of arbitrary dimension. The result, which provides an explicit set of candidate
poles, is expressed in terms of the sequence of Newton polyhedra of certain monomial ideals, which we
call logarithmic jacobian ideals, associated to the modules of differential forms with logarithmic poles
outside the torus of the toric variety.

INTRODUCTION

Let S denote an irreducible and reduced algebraic variety of dimension d defined over the field C of
complex numbers. The set H(S) of formal arcs of the form, Spec C[[t]] — S can be given the structure
of scheme over C (not necessarily of finite type). If 0 € S we denote by H(S)o := j; '(0) the subscheme
of the arc space consisting on arcs in H(S) with origin at 0. The set Hy(.S) of k-jets of S, of the form
Spec C[t]/(t*T1) — S, has the structure of algebraic variety over C. By a theorem of Greenberg, the
image of the space of arcs H(S) by the natural morphism of schemes jj : H(S) — Hy(S) which maps
any arc to its k-jet, is a constructible subset of Hj(S). Notice that ji(H(S)) = Hg(S) if S is smooth
but ji(H(S)) # Hi(S) in general. Since a constructible set W has an image [W] in the Grothendieck
ring of varieties Ko(Varg) it is natural to measure the singularities of S by considering the formal
power series:

(1) Paom(T) =Y _[js(H(S))T* € Ko(Varc)[[T]],
s>0

which is called the geometric motivic Poincaré series of S. Similarly, the local geometric motivic
Poincaré series of the germ (S,0), denoted by Pgig?,?(T), is defined by replacing H(S) by H(S)p in
the right hand side of ([0l). Denef and Loeser introduced these series, inspired by the Poincaré series of
Serre-Oesterlé in arithmetic geometry (see [D-L5]). They proved that the image of these series in the
ring Ko(Varc)[L™][[T]] (where L = [A{] denotes the class of the affine line) has a rational form (see
[D-L1]).

If (S,0) is an analytically irreducible germ of plane curve the series Péi;ﬁ? (T') is determined by the
multiplicity of (S,0) (see [D-L3|). For a general singular variety .S, the invariants of S encoded by the

series Pg(ﬁgﬂf (T'), in particular by the denominator of its rational form, are not well understood. In
comparison with other motivic series, as the motivic zeta functions of a polynomial or ideal, there is
not a general formula for Péﬁ;?,?(T) in terms of a resolution of singularities of S (see [D-L2]). Some
positive results in this direction have been obtained by Nicaise for a class of singularities defined in
terms of the existence of an embedded resolution of special type; the simplest example in this class
are those hypersurface singularities with embedded resolution obtained by one blowing up (see [N2]).
Lejeune-Jalabert and Reguera [LJ-R] have given a formula for the local geometric motivic Poincaré
series of a germ (5,0) of normal toric surface at its distinguished point in terms of the Hirzebruch-
Jung continued fraction describing the resolution of singularities of the germ (S,0). The alternative
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computation of the geometric motivic Poincaré series of a normal toric surface singularity is given in
IN2]. The comparison with the arithmetic and the Igusa series is contained in [N1J.

In this paper we consider the case of (S,0) being the germ of an affine toric variety (Z%,0) of
dimension d at its 0-dimensional orbit. Here A denotes a semigroup of finite type of a rank d lattice
M such that Z* := SpecC|[A] (cf. Notation [L.T]).

Our approach is inspired by Lejeune-Jalabert and Reguera [LJ-R], though there are substantial
differences coming from the particularities of normal toric surfaces, which verify that:

(a) Every truncated arc is the jet of an arc with generic point in the torus.
(b) Any pair of consecutive integral vectors in the boundary of the Newton polygon of the maximal
ideal define a basis of the lattice.

Property (a) holds more generally for normal toric singularities (see [N1]) but does not hold in general
without the assumption of normality, the simplest example is the Whitney umbrella (see Remark [3.4]).
Property (b), which plays also an essential role in the comparison of various types of motivic series in
INT], does not generalize even for normal toric germs of dimension > 3.

We deal with the failure of property (a) by characterizing combinatorially the jets of those arcs
which cannot be obtained as jets of arcs factoring through proper orbit closures of the action of the

torus on Z». We define the auxiliary series P(A) by taking classes in the Grothendieck ring of these

A
sets and considering the associated Poincaré series. We have that Pg(fon;o) (T)=> P(ANT), where 7

runs through the faces of the cone R>oA of Mg := M @z R. The term P(AN7) is the auxiliary series
associated to the toric variety ZA"7, which is an orbit closure of the torus action on Z2.

The failure of (b) is overcome by the systematic use of the logarithmic jacobian ideals associated to
the toric variety Z* to study jet spaces. The logarithmic jacobian ideals Ji,. .., Jy of Z* are defined
in terms of the minimal set of generators of the semigroup A in Section[dl The ideal [J; is the maximal
ideal defining the closed point of the germ (Z*,0). The ideal [J; appears in [LJ-R] in connection with
the combinatorial description of the Nash blowing up (see also [GS, [T]). If 1 < k < d, the logarithmic
jacobian ideal Jj can be described in terms of the module of Kéahler differential k-forms on 70 over
C, in a way which generalizes the one given for Jy in the Appendix of [LJ-R] (see Section [[1)). Up to
our knowledge, if d > 3 the ideals Jo, ..., J4—1 appear in this paper for the first time in the literature.

Ishii noticed that the arc space of the torus acts on the arc space of the toric variety Z* (see [I1} 12]).
The set H* consisting of those arcs of H(Z*)y which have their generic point in the torus is a union
of orbits. These orbits are in bijection with the possible orders of the arcs, naturally identified with
the elements of the dual lattice N := M?*, which are in the interior of the dual cone o of R>oA.

For v €6 NN we denote by H; the corresponding orbit in the arc space. We show that the jets of
these orbits are either disjoint or equal and we characterize the equality in combinatorial terms. We

prove that the coefficient of 7™ in the auxiliary series P(A) expands as the sum of classes [j,,(H)]

in the Grothendieck ring, for v running through a finite subset of & NN. The combinatorial convexity
properties of the Newton polyhedra of the logarithmic jacobian ideals allow us to determine a simple
formula for the class of j,,(H}) in the Grothendieck ring (see Theorem [TT]).
A
The main result states that the rational form of the geometric motivic Poincaré series Pg(czon,lo) (T)
is determined by the Newton polyhedra (with integral structure) of the logarithmic jacobian ideals of

the orbit closures of Z* (see Theorem and Corollary [10). In particular we describe explicitly a

A
finite set of candidate poles for the rational form of Pg(CZon;O) (T'). We give a geometrical interpretation of

the candidate poles in terms of the order of vanishing of certain sheaves of locally principal monomial
ideals along the exceptional divisors of certain modifications, which are both defined in terms of
the logarithmic jacobian ideals. The rationality of the series is deduced at this point from a purely
combinatorial result: the rationality of the generating series of the projection of the set of integral
points in the interior of a rational open cone (see Theorem [[2.4]). The appearance of these projections
seems the combinatorial analogue of the quantifier elimination results used in [D-L1].

We give two applications:

o We deduce a formula for the global geometric motivic Poincaré series szcgm(T) in the normal
case (see Theorem [ETT]).

e We prove a formula for the motivic volume of the arc space of the germ (Z*,0) in terms of
the logarithmic jacobian ideal [J; (see Proposition [I0.2]). We have obtained this result without
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using Denef and Loeser’s formula for the motivic volume of a variety S in terms of a resolution
of singularities (see [D-L1]).

In the normal toric surface case, property (b) allows an explicit description of the series in [LJ-R].
In this case only the terms 1 — T and 1 — LT, which appear then in the denominator of the rational
form of the series in Corollary [£.10, are not actual poles. This property is a particularity of the normal
toric surface case. We give an example of toric surface Z* such that all terms in the denominator of
the rational form of Pg(czol;;o)(T) in Corollary LT0] are actually poles (see Section [I3).

In [C-GP] we extend the results and approach of this paper to the case of a germ of irreducible quasi-
ordinary hypersurface singularity of arbitrary dimension d in terms of similar notions of logarithmic
jacobian ideals. Rond states some partial results on this case in |R]. In general it is a challenge to
analyse this motivic series in terms of some suitable notion of logarithmic jacobian ideals associated to
a partial resolution of singularities of a given singularity. It is a natural problem to find a geometrical
meaning for the logarithmic jacobian ideals in terms of limits of tangent spaces.

The results of this paper hold if the base field of complex numbers C is replaced by an algebraically
closed field of zero characteristic. The assumption that the base field has characteristic zero is used in
Section

The paper is organized as follows. In Section [I] we set our notations on toric varieties. In Section
some results on arcs and jets spaces are recalled. We describe the orbit decomposition of the arc
space of a toric variety in Section Bl In Section [4] we state the main results. In Section Bl we give
some combinatorial convexity properties of the Newton polyhedra of the logarithmic jacobian ideals.
Section [6] deals with the universal family of arcs in the torus. In Section [l we analyze the jets of
the orbits in the arc space. The main results on the geometric motivic Poincaré series are proved in
Sections §land @ A formula for the motivic volume is given in Section Sections [[T] and 12 can be
read independently of the rest of the paper. Section[I1]is dedicated to the definition of the sequence of
logarithmic jacobian ideals in terms of differential forms. Section [I2] deals with generating functions.

1. A REMINDER OF TORIC GEOMETRY

In this Section we introduce the basic notions and notations from toric geometry (see [Ewl [Ol
Fl, [GKZ| for proofs). Following the convention established at the meeting “Convex and algebraic
geometry”, Oberwolfach (2006), we do not assume the normality in the definition of toric varieties.

If N = Z% is a lattice we denote by Ngr := N ® R (resp. Nq := N ® Q) the vector space spanned
by N over the field R (resp. over Q). In what follows a cone in Ng mean a rational convex polyhedral
cone: the set of non negative linear combinations of vectors ai,...,a, € N. The cone 7 is strictly
convez if it contains no line through the origin, in that case we denote by 0 the 0-dimensional face of
7; the cone 7 is simplicial if the primitive vectors of the 1-dimensional faces are linearly independent
over R. We denote by 7 or by int(7) the relative interior of the cone 7. We denote by Rt the real
vector subspace spanned by 7 in Ngr.

We denote by M the dual lattice. The dual cone 7V C Mg (resp. orthogonal cone 71) of T is the
set {w € Mg | (w,u) >0, (resp. (w,u) =0) Yu € 7}.

A fan X is a family of strictly convex cones in Ngr such that any face of such a cone is in the family
and the intersection of any two of them is a face of each. The relation § < 7 (resp. 6 < 7) denotes
that 6 is a face of 7 (resp. 6 # 7 is a face of 7). The support (resp. the k-skeleton) of the fan ¥ is the
set |X] :=U,cx ™ C Nr (resp. »*) = {7 € ¥ |dim7 = k}). We say that a fan ¥’ is a subdivision of
the fan ¥ if both fans have the same support and if every cone of ¥/ is contained in a cone of ¥. If 3;
for i =1,...,n, are fans with the same support their intersection NI %, := {Nf_,7; | 7; € X;} is also
a fan. The 1-skeleton of N}_;3; is U?ZlEgl).

Notation 1.1. In this paper A is a sub-semigroup of finite type of a lattice M, which generates M
as a group and such that the cone 0¥ = RxoA is strictly convex and of dimension d. We denote
by N the dual lattice of M and by ¢ C Ng the dual cone of o¥. We denote by Z* the affine toric
variety Z* = Spec C[A], where C[A] = {> . ..o ax X" | ax € C} denotes the semigroup algebra of the
semigroup A with coefficients in the field C. The semigroup A has a unique minimal set of generators
e1,...,en (see the proof of Chapter V, Lemma 3.5, page 155 [Ew]). We have an embedding of Z* ¢ C"
given by, z; := X fori=1,...n.
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If A = ¢V N M then the variety Z*, which we denote also by Zs,n or by Z; when the lattice is clear
from the context, is normal. If A # ¢¥ N M the inclusion of semigroups A — A = 0¥ N M defines a
toric modification Z* — Z*, which is the normalization map.

The affine varieties Z, corresponding to cones in a fan ¥ glue up to define a toric variety Zs,. For
instance, the toric variety defined by the fan formed by the faces of the cone o coincides with the affine
toric variety Z,. The subdivision ¥/ of a fan ¥ defines a toric modification ws: : Zsy — Zx.

The torus Ty := ZM is an open dense subset of Z*, which acts on Z* and the action extends
the action of the torus on itself by multiplication. The origin 0 of the affine toric variety Z* is the
0-dimensional orbit, which is defined by the maximal ideal (X*)o2xea of C[A]. There is a one to one
inclusion reversing correspondence between the faces of ¢ and the orbit closures of the torus action
on Z*. If § < o, we denote by orbé\ the orbit corresponding to the face 6 of 0. The set A N O+ is
a semigroup of finite type which generates a sublattice M (6, A) of finite index i(f, A) of the lattice
M N6+, We denote by N(#,A) the dual lattice of M(6,A). The image o/R@ of the cone o in the
vector space Nr /R is the dual cone of R>o(A N #+). The toric variety ZAN0" which is embedded

in Z%, is the closure of orbé‘. The origins of Z* and ZAN" coincide. We say that Z» is analytically
unibranched if for any z € Z* the germ (Z*,z) is analytically irreducible, i.e., for all § < o we have
i(0,A) = 1 (see [GKZ] Chapter 5). Notice that normal toric varieties are analytically unibranched but
the converse is not true.

The ring C[[A]] of formal power series with coefficients in C and exponents in the semigroup A
is isomorphic to the completion of the local ring of germs of holomorphic functions at (Z*,0) with
respect to its maximal ideal.

The Newton polyhedron of a monomial ideal corresponding to a non empty set of lattice vectors
Z C A is defined as the convex hull of the Minkowski sum of sets Z + V. We denote this polyhedron
by N(Z). We denote by ordz the support function of the polyhedron N(Z), which is defined by
ordz : 0 = R, v inf,,cn(z)(v,w). The face of the polyhedron N(Z) determined by v € o is the set
F, i={w eN(2) | (v,w) = ordz(v)}. All faces of N'(Z) are of this form, the compact faces are defined

by vectors v €6. The dual fan ¥(Z) associated to an integral polyhedron A/(Z) is a fan supported on
o which is formed by the cones o(F) :={v € ¢ | (v,w) = ordz(v), Yw € F}, for F running through

the faces of N'(Z). Notice that if 7 € X(Z) and if v,/ €7 then F,, = F,,. We denote this face of N'(Z)
also by F.. Notice that the vertices of N'(Z) are elements of 7.

If 7 is a monomial ideal of Z, and ¥ = X(Z), then the toric modification 7y : Zs, — Z, is the
normalized blowing up of Z, centered at Z (see |[LJ-R] for instance).

2. ARCS, JET SPACES AND THE GEOMETRIC MOTIVIC POINCARE SERIES

In this Section we introduce arc and jet spaces on a variety S, i.e., a reduced separated scheme
of finite type over C. For simplicity we assume that S is affine and equidimensional of dimension d.
We refer to |3 [E-M] for expository papers on arc and jet schemes. See [D-L2l Lol [V], for expository
papers on motivic integration on arc spaces and applications.

We have that for all integers m > 0 the functor from the category of C-algebras to the category
of sets, sending a C-algebra R to the set of R[t]/(t™1)-rational points of S is representable by a
C-scheme H,,(S) of finite type over C, called the m-jet scheme of S. The natural maps induced by
truncation ;M1 . H,,1(S) — H,,(S) are affine and hence the projective limit H(S) := Jim Hp(S) is
a C-scheme, not necessarily of finite type, called the arc space of S. The scheme H(S) represents a
functor sending a C-algebra R to the set of R[[t]]-rational points of S. It is the arc space of S. We
consider the schemes H,,(S) and H(S) with their reduced structure. If Z C S is a closed subvariety
then H(S)z := jo "(Z) (resp. Hp(S)z := (j5*)~*(Z)) denotes the subscheme of H(S) (resp. of
H,,(S)) formed by arcs (resp. m-jets) in S with origin in Z.

We have natural morphisms j,, : H(S) — H,,(S). By an arc we mean a C-rational point of H(S),
i.e., a morphism Spec C|[t]] — S. By an m-jet we mean a C-rational point of H,,(S), i.e., a morphism
Spec C[t]/(t™*!) — S. The origin of the arc (resp. of the m-jet) is the image of the closed point 0 of
Spec C[[t]] (resp. of Spec C[t]/(t™1)).

If h(t) = 3,50 ait’ is a formal power series and m > 0 we set jn, (h(t)) := h(t) mod t™*1.
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Suppose that S C A% is a closed affine subvariety with ideal I C Clz1,...,xy), for (z1,...,2,)
coordinates of C™. An arc Spec C[[t]] — A is defined by n power series
(2) zi(t) = ago) + agl)t + a§2)t2 +- al(-r)tr +---, i=1,...,n.
An m-jet SpecC[t]/(t™T1) — A% is defined by n-polynomials of the form given by @) mod ¢™*1. If
F € I we have a power series expansion

(3) F(1(t),...,2a() = o (@) + ap) @, aM)t + o @, 4, @)t + - -
())

where the coefficients ozgf) are polynomials expressions in (a(?,...,a®) where o) = (agj), cean’),
for j € Z>o. The arc @) (resp. the m-jet of [2))) factors through S if (3] vanishes for all F € I (resp. if
@) vanishes mod t™*! for all F € I). The arc space H(S) (resp. m-jet space H,,(S)) is the reduced

scheme underlying the affine scheme SpecAg, where Ag = C[a?),...,a®, ... ]/(04;9), ol agf), . ) Fel
(resp. Spec Ag m, where Ag,, := Clal?, ... ,g<m>]/(a§9), cee O[;;wm))pej). The universal family of arcs

of S, which is the map Spec Ag[[t]] — S defined by []), parametrizes the arcs in H(S).

We recall the definition of the Grothendieck ring Ko(Varc) of C-varieties. This ring is generated
by the symbols [X] for X an algebraic variety, subject to relations: [X] = [X'] if X is isomorphic to
X' [X]=[X — X'] 4+ [X'] if X" is closed in X and [X][X'] = [X x X']. We denote by L := [A{] the
class of the affine line and by M the localization Kq(Varc)[L™1].

If C is a constructible subset of some variety X, i.e. a disjoint union of finitely many locally closed
subvarieties A; of X , then it is easy to see that [C] € Ko(Varc) is well defined as [C] := ), [A;].

A set A C H(S) is constructible or cylindric if A = j,.1(C), for some integer m and some con-
structible subset C C H,,(S); the constructible set A is stable if, in addition, for all p > m the
projection jE*! : j, 1 1(A) — j,(A) is a piece-wise trivial fibration with fiber A¢, (where d = dim S).
If A cC H(S) is constructible and AN H(SingS) = @ then A is stable (see [D-L1]). For a stable set it
makes sense to consider the naive motivic measure, defined as the limit 1im,, oo [jm (A)JL™™¢ € M (by
definition of stability all the terms [j,,(A)]L~™¢ are equal for m large enough). Kontsevich introduced
a completion M := @M /EF™ of the ring M, where F™ for m € Z, is the subgroup of M generated

by [X]L~% such that dim X +m < i and (F™) defines a ring filtration since F"™F?P C F™*P.

Theorem 2.1. (see [D-L1] Theorem 7.1) Let A be a constructible subset of H(S). Then the limit
(A) := 1My, o0 [fim (AL~ exists in M. If A= H(S) this limit is nonzero.

If A is a constructible subset of H(S), then p(A) is called the motivic measure of A. Notice that
if S is irreducible and Z C S is a proper closed subset then H(Z) C H(S) is not cylindric. There
exists a class of measurable sets containing H(Z) and the cylinders and a measure p with values on
M, extending the motivic measure of constructible sets. We refer to [D-L1| [D-L4l [Lo] for the precise
definition.

Definition 2.2. The motivic measure of the arc space H(S)z for Z a closed subvariety of .S, is called
the motiwic volume of H(S)z.

Proposition 2.3. (see [D-L1l ID-L4l [Lo|) If A C H(S) is a measurable set such that A C H(Z) for
some closed subvariety Z C S with dim Z < dim S then p(A) = 0.

By a Theorem of Greenberg [Gr], see also [E-M], jn,(H(S)) is a constructible subset of H,,(S),
hence it has an image in the Grothendieck ring Ko(Varc). The same applies for j,,(H(S)z) if Z C S
is a closed subvariety.

Definition 2.4. Let S be a variety and Z C S a closed subvariety. The geometric motivic Poincaré
series of S (resp. of (S, 7)) is the element of Ky(Varc)[[T]] defined by

Phom(T) =Y [m(HNIT™  (vesp. BED(T) =Y [jm(H(S)2)T™).

m>0 m>0

For instance, it is easy to see that P, (T) = L1 — L4T)~! and Pg(c((:;ﬁo) (T)y=(01- LdT)_l. We

geom

often call the series P2 (T) (resp. Pées(;ﬁ) (T")) the motivic Poincaré series of S (resp. of (S, Z)) for

geom
short. Denef and Loeser proved that these series have a rational form:
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Theorem 2.5. (see |[D-L1| Theorem 1.1) The series Pgseom(T) (resp. Pg(ﬁgfl) (T)), considered as an

element of MI[T]] belongs to M(T'), more precisely there exist Q(T) € M[T], a; € Z and b; € Z>1,
fori=1,...,r, such that the series is of the form Q(T)[;_ (1 — LaTb)~1,

The proof of this deep result is based on quantifier elimination for semi-algebraic sets of power
series, a substantial development of the theory of motivic integration introduced by Kontsevich and
the existence of resolution of singularities of varieties over a field of zero characteristic. See [D-L5| for
relations with other Poincaré series in arithmetic geometry.

3. ARCS AND JETS ON A TORIC SINGULARITY

Let A be a semigroup, as in Notation [LIl If R is a C-algebra, a R-rational point of Z% is a homo-
morphism of semigroups (A, +) — (R, ), where (R, -) denotes the semigroup R for the multiplication.
In particular, the closed points are obtained for R = C. An arc h on the affine toric variety Z* is given
by a semigroup homomorphism (A, +) — (CJ[t]],-). An arc in the torus Tl is defined by a semigroup
homomorphisms A — C[[t]]*, where C[[t]]* denotes the group of units of the ring CJ[[t]].

Notation 3.1. We denote the set of arcs H(Z")y of Z* with origin at the distinguished point 0 of
Z% simply by Hy, and by H7} the set consisting of those arcs of Hp with generic point in the torus
Tn.

Notice that h € H} if and only if for all w € A the formal power series X" o h € C[[t]] is non-zero.
Any arc h € H} defines two group homomorphisms vy, : M — Z and wy, : M — CJ[[t]]* by: X™oh =
tvr(mMy, (m). If m € A then vy,(m) > 0 hence v, belongs to & NN. Notice that wy, defines an arc in
the torus, i.e., wp, € H(TN).

Ishii noticed that the space of arcs in the torus acts on the arc space of a toric variety (see [I1 12]).

Lemma 3.2. (Theorem 4.1 of [[1], and Lemma 5.6 of [[2]). The map 0 NN x H(Tx) — H} which sends
a pair (v,w) to the arc h defined by X" o h =t w(u), foru € A, is a one to one correspondence.
The sets H , == {h € H} | vy = v} forv €0 NN are orbits for the action of Hry on H) and we

have that Hy = UUES'ON HXW.

The sets defining these orbits were also considered by Lejeune-Jalabert and Reguera in the normal
toric surface case (Proposition 3.3 of [LJ-R]).

Remark 3.3. We often denote the set H} (resp. the orbit Hy ,) by H* (resp. by H;) if A is clear from
the context.

An arc h € Hy has its generic point 7 contained in exactly one orbit of the torus action on Z*. If
h(n) € orby, for some < &, then h factors through the orbit closure ZA0" and h e Hi oo

an arc through (Z‘meL ,0) with generic point in T, 9) = orb}. We can apply Lemma B2 to describe
the set H} .., just replacing A, o, M and N by AN 6+, o/RO, M(A,0) and N(A,0) respectively (cf.
with notations in Section [[). In particular, if # = 0 then h € H}; if § = o then AN O+ = 0 and h is

the constant arc at the distinguished point 0 € Z*. We have a partition Hy = Uo<oH§ g1

i.e., his

Remark 3.4. In the normal case the equality j,(Ha) = jm(Hj) holds for all m > 0, see [N1]. This
property fails in general, for instance, the arc h(t) = (0,t,0) of the Whitney umbrella, {(z1,x2,z2) |
zixy — 23 = 0}, is contained in the singular locus but its 1-jet is not obtained as the jet of an arc h’
with generic point in the torus.

4. STATEMENT OF THE MAIN RESULTS ON THE GEOMETRIC MOTIVIC POINCARE SERIES

In this Section we state the main results of the paper. The proofs are given in Section [0
We consider the following auxiliary Poincaré series:

(4) P(A) =" [jH)\ | js(Haner)]T* € Ko(Varc)[[T]].

5>0 0#£0<o

Notice that the Poincaré series P(A) measures the classes in the Grothendieck ring of the jets of
arcs in Hj which are not jets of arcs in Hyng1, for any 0 # 0 < o, i.e., jets of arcs with origin in 0
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which are not jets of arcs factoring through proper orbit closures of the toric variety Z*. It follows
that:

Proposition 4.1.
PZOT) =3 P(AN6Y).

geom
6<o

Example 4.2. The series P(A N o) takes into account those jets of arcs in Hy which coincide with
the jet of the constant arc. We have that P(ANot) =3 o [{0HT* = > o, T hence P(ANot) =

(1-1T)"1.

Proposition 4.3. If d = 1 and the multiplicity of the monomial curve Z™ at the origin is equal to m
then the series P(A) is equal to (L — 1)T™(1 — LT) ' (1 —T™)"".

Example 4.4. Let A be a semigroup, as in Notation[[.T] defining a toric variety of arbitrary dimension.
For any 6 < o of codimension 1 we denote by mg the multiplicity of the monomial curve (ij‘gL ,0).

Then we have P(AN#+) = (L — 1)T™ (1 — LT)~ (1 — T™) L.

Definition 4.5. Recall that e;...,e, denote the minimal system of generators of the semigroup
A. The kt"-logarithmic jacobian ideal of Z* is the monomial ideal Jj of C[A] corresponding to the
following subset of A,

(5) {ei, +-+e, | e, Ao Aegy, 0, for 1 <ip <+ <ip <nj.
We abuse of notation by denoting also by Jj the set (B).

Remark 4.6. The motivation for this terminology is inspired by the Appendix in [LJ-R] and by the
fact that these ideals are defined geometrically in terms of differential forms on Z* with logarithmic
poles outside the torus (see Section [II]).

Notation 4.7. We denote by Xj (resp. by ordy, ) the dual subdivision of o (resp. the support
function) of the Newton polyhedron of the k'"-logarithmic jacobian ideal Ji, for k = 1,...,d. The
maps

¢1 = ordy, and ¢ := ordy, —ordyg, , fork=2,...,d,

v, = 0 and U, = (k—1)ordy, —kordy , fork=2,...,d,
are piece-wise linear functions defined on the cone o. If v € o we put ¢o(v) := 0 and ¢g41(v) := +00.
If p C o is a cone of dimension one, we denote by v, the generator of the semigroup p N N. We define
the finite set:

d

6) B(A) = {(d, 1)} u | {(qzk(yp), $e(v) | pe U5 and pNo£Dif k< d}.
k=1

Remark 4.8. Notice that the set B(A) depends only on the Newton polyhedra (with integral structure)
of the logarithmic jacobian ideals of Z*. In particular, we apply this observation to the sets B(AN#~+)
for § < 0. For § = o we convey that B(ANot) := {(0,1)}.

Theorem 4.9. The series P(A) is of the form

P(A) = Qx H (1 —LeT%) ", where Qy € Z[L,T)
(a,b)eB(A)

is determined by the lattice M and the Newton polyhedra of the logarithmic jacobian ideals of Z™.

Corollary 4.10. With notations of Theorem[-9 the local geometric motivic Poincaré series of (Z*,0),

A —
(7) Pg(inio) (T) = Z QAane- H (1 -1,
0<o (a,b)e B(ANOL)
is determined by the sequences of Newton polyhedra of the logarithmic jacobian ideals of ZAN" and

lattices M (0,A), for 0 < o.
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Corollary 4.11. Suppose that the affine toric variety Z* is normal. If 0 < o we denote by o
the image of the cone o in (Mg)r, where My := M/0+ N M and by A(0) the semigroup A(6) :=
(o N Mp) x ZSg™? . With this notation we have

PZA (T) _ Z(L _ 1)codim0P(ZA(9)7O) (T)

geom geom
<o

Remark 4.12. See also [C] for a generalization of this result to the class of affine toric varieties which
are locally analytically unibranched.

We make more explicit the result for surfaces:

Corollary 4.13. Let Z* be an affine toric surface (case d = 2 in Notation [I1). We denote by 60,
and 05 the one dimensional faces of the cone o. The terms which appear in the denominator of the
rational expression ([4) of Pg(CZO[:ﬁO) (T) are 1 =T, 1 = LT, 1 —L>T, 1 — T™% and 1 — LY2(e)7%2()
where the integer my, is the multiplicity of the curve ZAmej-’ fori=1,2, and p runs through the rays
Of 21 n 22.

Remark 4.14. Suppose that C denotes the field of complex numbers. If V is a variety the map V —
HD(V) € Z[u,v], where HD(V) denotes the Hodge-Deligne polynomial, factors through Ky(Varc)
inducing a ring morphism HD : Ko(Varc) — Z[u,v] which maps L — uv (see [D-L1]). It follows that
Z[L] = Z[X] where X is an indeterminate. By Corollary [4.10] the geometric motivic Poincaré series of
a toric singularity is an element of Z[L|(T), a ring in which the notion of the pole in T of a non zero
element is well defined since Z[L] is an integral domain.
A
Remark 4.15. If Z% is a normal toric surface then T'=1 and T = L~! are not poles of Pg(CZOH;O) (see
[ILI-R]). In general it may happen that all candidate poles mentioned in the statement of Corollary
are actual poles (see an example in Section [I3)).
A
We give a geometrical interpretation of the set of candidate poles of the series Pg(czon,lo) (T).
Definition 4.16. For 1 < k < d we denote by 7, the composite of the normalization map Z, — ZA
with the toric modification of Z, — Z, defined by the subdivision ﬁleEi of 0.

The modification 7 is the minimal toric modification which factors through the normalization of
Z% and the normalized blowing up of Z* with center J;, for i = 1,..., k. The rays p in the fan ﬁleZi
correspond bijectively to orbit closures of Zj, which are of codimension one. If v, is the generator of
the semigroup p N N we denote by E,, the irreducible component corresponding to p. We denote by
val,, the divisorial valuation of the field of fractions of C[A], which is associated to the divisor E,, . If
m € M then we have that

(8) val,, (X™) = (v,, m).
We have that ;ch if and only if E,, is a codimension one irreducible component of the exceptional

fiber of 71',:1(0). If 1 <i <k <d, the pull-back 7}(J;) of J; by 7 defines a sheaf of locally principal
monomial ideals on the toric variety Zy and by (&) we deduce

(9) val,, (73 (J:)) = ordg, (v,).
Proposition 4.17. For 1 <k <d,

Ly o= (7 (Te)" /(75 (Te=1))F and Qi := i (Ti) /7 (Ti—-1)
are sheaves of locally principal monomial ideals on Zy, such that

B(A) = {(d1)}UUsi{(valy, (Lr), valy, (Qx)) | By, C i (0)}
U{(valy, (La),val, (Qa)) | p € N, %;,dimp = 1}.

Remark 4.18. If (S,0) is equidimensional of dimension d then the term 1 — L4T appears always in the

denominator of the rational form of Pg(fo’ﬂ? (T'). This is consequence of Theorem 7.1 of [D-L1].
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5. COMBINATORIAL CONVEXITY PROPERTIES OF NEWTON POLYHEDRA OF Jj

We study the combinatorial convexity properties of the support functions of the Newton polyhedra
of the monomial ideals J;;, C C[A], for A as in Notation [T
If v € o then the relation <, defined by

(10) v <, v & (o) < (K'),

is a preorder on the set ¢¥ N M. We give an algorithm to determine a vector wy € J; such that
ordg, (v) = (v, wk).

Lemma 5.1. Let v be an element ofg NN such that

(11) €1 Su €2 Su Tt Sv €n,

for the preorder <, defined by {I). Define the sequence iy < iz < -+ < ig < n of 1,...,n in the
following inductive form: set i1 := 1, suppose that is, ..., i have already been defined and set:

(12) ipt1:=min{l <i<n ey A - Aej, ANe; # 0}

Set wy :=e;, +---+¢€;, fork=1,...,d. Then we have:

(13) ordy, (v) = (v,wg) and  ¢r(v) = (v, e;,).
Proof. We deduce from (I2)) that:

(14) (vyeq ) =min{(v,e;) [ 1 <i<n, I <y < <jp<n, ej, A---Nej, Aeg # 0}
The statement is obvious for k£ = 1. Suppose the result for 1 < k < d. We have then that:

Def. by induction

OrdJk+1 (V) < <V7 €jy + o eik+1> ordg, (V) + <V7 eik+1>'

The other inequality follows from Formula (I4) since
ordz,,,(v) = min{(v,e; +---+ ejk+1>}0;éej1/\---/\ejk+1

min{(l/, €j, + -+ ejk>}07£ejl/\-~/\ejk + min(l/, ejk+1>

OI’djk(V) + <V7 eik+1>'

1V

O

Proposition 5.2. For every v in G NN there exist 1 < i1,...,iq < n such that ¢p(v) = (v,e;,.),
Zle e, € Ji and ord g, (v) = (v, Zle ei,.), fork=1,....d.

Proof. It follows immediately from Lemma [5.1] O
Corollary 5.3. Ifv €0 NN we have that:
(15) 0=¢o(v) <d1(v) < da(v) < -+ < da(v) < day1(v) = +o0.
Definition 5.4. For 0 < k < d we set Ay, := {(v,s) | v €6 NN, ¢ (v) < s < dpp1()}.
Proposition 5.5. The sets Ay, ..., Aq define a partition of (8 NN) X Zg.

Proof. Tt follows from Corollary 5.3l 0

Definition 5.6. If (v, s) € (3 NN) x Zso we denote by ¢£; the linear subspace of Mq given by
0= spanQ{ei |1<i<nand (ve;) < s}

Lemma 5.7. Let (v, s) belong to Ay, for some 1 <k <d. Let wy € Ji, verify that ordg, (v) = (v, wg).
Ifwy, =ej, +---+ej, is an expansion as a sum of k linearly independent vectors in {e1,...,e,} then

{€j1,...,€j,} is a basis of the vector space (5. Ife; € £ and e; = Zle are;. then a,. # 0 implies that
(v,e;) < (v,e;), forr=1,... k.
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Proof. Let e;,,...,e;, be the vectors defined by Proposition 5.2l We set w]. :=e;, +---+e¢;, for r =
1,...,d. By Proposition and Corollary B3lif 1 < r < k then we deduce ¢,.(v) = (v,e;.) < s. This
implies that spang{e;,,...,e; } C £;. If for some 1 <i <n, (v,e;) < s and e; ¢ spang{ei,,..., e, }
then the vector wy41 := e, +---+e;, +€; belongs to Jx41 hence ordy, ., (v) < (v, wi41) = ordyg, (v)+
(v, e;). This implies that ¢r11(v) < (v,e;) < s, a contradiction with the fact that (v,s) € A,. We
have shown that £;, = spang{ei,,...,e;,}.

Suppose that there exists a vector wy = €5, +--- + ¢, € Ji such that:

(16) ordg, (v) = (v,wy) = (v,wy) and  spang{ei,,..., e, } 7 spang{ej,...,ej }.

Then there exists 1 < kg < k such that ej;, ¢ spang{es,,...,ei }. If (v,e;, ) < (v,e;,) then the
vector Wy = e, + -+ e;,_, + e, belongs to Jy and (v,10y) < ordg, (v) by ([6), a contradiction. If
(v,ei,) < (v,ej,, ), then the vector wj — ej, ~belongs to Jx—1 and we have (v, w), — e;, ) < (v,w)_,),
which contradicts the formula ordy, ,(v) = (v,w},_,). Thus, the equality

(17) <V7 ejk0> = <V7 eik>
holds. The equality ¢x(v) = ¢r+1(v) follows from (I7) and the inequalities:
@3 a3) Def.
<Va eik> = ¢k (V) < ¢k+1(V) = Ord7k+1 (V) - OrdJk (I/),

Def. @)
Ordjk+1 (V) < <I/7 € + ot eg + ejk0> = Ordjk (V) + <V7 ejk0>'
Finally, if we have an expansion e; = Ele arej, with o, # 0 and (v, e;) < (v, ¢e;, ) then the vector

W = e; + Zle’r#m ej, belongs to Ji. The inequality ordy, (v) = (v,ej, +--- +e;,.) > (v, W), is a
contradiction with the definition of the support function. O

6. THE UNIVERSAL FAMILY OF ARCS IN THE TORUS

We describe the universal family of arcs in the torus Ty of a rank d lattice N and some properties
of its functions which are useful to deal with jets of arcs in toric varieties. In this section we use that
the characteristic of the base field C is zero.

Let us fix a basis mq,...,mq of M. We set

A := Cle(m;) ] @c C[uj(mi)]gfll,...,dv

where {c(m1), ..., c(ma)} U {u;(m;)}/Z] , are algebraically independent over C. Then there is one
homomorphism of semigroups h* : (M, +) — (A[[t]]*,-) such that m; = c(m;)(1 + 3,5 uj(m)t?)
for i = 1,...,d. We have that the image of m € M by this homomorphism is to ¢(m)u(m) where
u(m) € A[[t]] is a series of the form u(m) =1+3 -, u;(m)t?. Notice that if m,m’ € M then we
have ¢(m 4+ m’) = c¢(m)e(m’) and u(m + m’) = u(m)u(m’). By the description of Section B we check
that A = Ap, and the map h : SpecA[[t]] — T'v corresponding to h*, is the universal family of arcs
in the torus. The following two lemmas show some relations among the elements u;(m) € Ar, , when
we vary ¢ and m € M, in terms of linear dependency relations among the m € M.

.....

Lemma 6.1. Let mq,...,my be a set of linearly independent vectors of M. If 0 # m = Zk

j=1 A5
with a; € Z then we have:

k
18) wilm) = 3" apuitmy) + R (s (me)2h
r=1

for all © > 1, where RETI) s a quasi-homogeneous polynomial of weight i, with rational coefficients in

(uj(m,))Y =141 where wj(m,.) is given weight equal to j, forr=1,... .k and j=1,...,i — 1.

Proof. We have that u(m) = H;C:l u(m;)® = H;C:l (Zz‘zo ui(mj)ti) " Remark that if ¢ =
ST uitt € C[[t]] is a series with constant term equal to one and if n € Z then the series ¢" is of the
form: ¢" = ZPi(n)ti where Pi(") = nu; + R(n)(ul, ...,u;—1) Is a quasi-homogeneous polynomial in

%

u1, ..., u;, where u; has weight equal to [; notice that the coefficient n of u; does not vanish since C is a
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N a
field of characteristic zero. We use this observation to compute the expansion of [| j (Zi>0 ui(mj)tz) ’

as a series in t. 0
Lemma 6.2. Ifm’y,...,m'y and my, ..., my are linearly independent vectors in the lattice M spanning
the same linear subspace £ of Mq then for any s > 1 we have the equality of Q-algebras:
k k

(19) Qur(m'y), ..., us(m'j)lj=1 = Qua(my), ..., us(my)]j-y.
In particular, if m = 2521 a;m;, with a; € Q then u;(m) belongs to the Q-algebra (I9) fori=1,...,s.

Proof. 1t is sufficient to prove it in the case that mq, ..., my are a basis of the rank k lattice /N M.
We show the result by induction on s. Since my,...,my form a basis of £N M and m/,. € £ N M we
have expansions: m/, = a,1m1 + -+ + ap pmy with a,; € Z, for j =1,...,k, and r = 1,..., k. Since
m'1,...,m'y are linearly independent we have expansions: m, = b.1m/'y + -+ + by pym/y b, ; € Q,

forj=1,....,kand r = 1,...,k. For s = 1 the term R((Jm) appearing in formula ([I8) is equal to
zero thus by Lemma we obtain that ui(m/;) = apjui(mi) + -+ + appui(myg) and ui(m,) =
briui(m’1) + -+ brgur(m'y), for r =1,..., k. Using the induction hypothesis for all 1 < s’ < s and
the triangular form of formula (I8) for us(m',) we deduce that us(m,) is of the form:

us(mr) - br,lus(m/l) + -+ br,kus(m/k) + PT,S;

where P, ; belongs to Qluy(m’;), ... us_1(m';)]5_,. O
Proposition 6.3. If the vectors mq,...,my in M are linearly independent then the following elements
of Ary are algebraically independent over C:

(20) C(ml)v"'vc(mk)a and u’i(ml)a"'aui(mk)a Vi > 1

7. THE IMAGE IN THE GROTHENDIECK RING OF THE JETS OF THE ORBITS

Let v belong to the set & NN. We consider the orbit HY of the action of the arc space of the
torus on H . The universal family of arcs in the torus parametrizes the arcs in H; by the morphism
W, : SpecAry [[t]] = Z* given by:

X% oW, =t ¢(e;)ule;), fori=1,...,n.
Recall that ey, ..., e, is the minimal system of generators of A (cf. Notations [LT]).

We prove that the set j,(H}) is a locally closed subset of js(Ag)o = A and we determine its class
in the Grothendieck ring of varieties.

Theorem 7.1. If (v,s) € Ay for some 0 < k < d, then the jet space js(H}) is a locally closed subset
of Hy(Z™)q isomorphic to {0} if k =0 or to (C*)* x Agsjordj’“(u) if k> 0.

Proof. If h € H} the equality ord;(X® o h) = (v, e;) holds for 1 < i < n. By Definition those
vectors e; such that j,(X ¢ o h) # 0 span the Q-vector space £5 since (v,e;) < s. If kK = 0 this vector
space is empty, the jet space js(H;:) consists of the constant 0-jet and the conclusion follows.

Suppose then that k£ > 0. We denote by OF (resp. by C%) the C-algebra of Ar, generated by:

(21) c(ei)il,ul(ei), ooy Us_(p,e;)(e7) for those 1 < i < n such that (v,e;) < s,
(resp. c(ei)il for those 1 <4 < n such that (v,e;) <s ).

By Proposition[.2the vector v determines integers 1 < i1, ..., i; < nsuch that ordy, (v) = Ef:1<u, €i.)
Assertion. We have the following properties:

(i) Denote by U the variables (Uy, ..., Uks—ordg ( )). For any 1 <i<n andl such that 1 <1<
(v
s — (v, e;) there exists a polynomial P, ; € Q[U] such that

ul(ei) = H,i (ul(eil)u oo 7u57<v,ei1> (ei1)7 oo ,Ul(eik), v 7usf(u,eik>(eik)) .
(ii) The ring OF is generated as a C-algebra by
(22) (€, )5 ooy Us—(ve; ) (€0,), forr =1,... k.

(iii) The lattice MS spanned by {e; | 1 <i < n, (v,e;) < s} is of rank k. The map C; — C[M;]
given by c(e;) — X is an isomorphism.
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(iv)  The variety SpecOS is isomorphic to (C*)* x A]és_ord]"(u)

Proof of the Assertion. By Lemma [5.7] the vectors e;,, ..., e;, define a basis of £5. If e; is a vector in
03 with (v,e;) < s, and e; = Zle are;, € 05, then a, # 0 implies that (v,e;) > (v,e;,.). We deduce
from Lemma 6.2 that the elements uy(e;), ..., Us—(u.e,)(€i) belong to the Q-algebra generated by (22).
This implies that (i) and (ii) hold.

By Lemma and the definitions the ring C} is isomorphic to the C-algebra of the lattice M.
The assertion (iii) follows, since by definition M} is a sublattice of finite index of the rank k lattice
;N M.

Finally, (iv) follows from these observations and Lemma This ends the proof of the Assertion.

By the Assertion the morphism

¢ : Spec C) ®@c ClU] — js(AG)o,
given by

 ceq) tten (1 + Pi(U)t - - P57<V78i>1i(g)t5—<11,6i>) if  (v,e;) <s,
zi(t) = 0 it (v,e;) > s,
for 1 <i < n, is an inmersion. The image Im(¢)) of ¥ is a locally closed subset.

Finally, if h belongs to H;;, then js(h) belongs to Im(¢)) by the Assertion. Conversely, if £ € Im(%))
we define an arc h € H} such that js(h) = £ by specialization from the universal family. First, for
1<i<nandl>1weset ue) =01i1l > s — (v,e;). By the Assertion the coefficients u;(e;)
associated to h, for 1 < s— (v, e;) <1, are complex numbers determined by . In order to complete the
definition of h we have to give values for the coefficients ¢(e;) corresponding to h. We have an injection
of C-algebras C[M;] C C[M] = Cle(e;)!]7; which corresponds to a surjective map of torus. The
inicial coefficients associated to £ define a closed point p(€) of the torus SpecC[M;]. Any closed point
in the fiber of p(£) by this map provides suitable initial coefficients ¢(e;) € C*, in such a way that the
resulting arc h verifies that js(h) = €.

Notice that O% is the coordinate ring of the locally closed subset j(H}). 0

8. DESCRIPTION OF THE SERIES P(A)

We describe the coefficients of the auxiliary series P(A). We study in which cases the intersections
Js(H}) N js(Hy ) and js(Hy ) N js(Haner) are non-empty, for (v,s), (v/,s) € Ay and 6 < o.

Definition 8.1. Define an equivalence relation in the set Ay for any 1 < k < d:

s =5, v and v/ define the same face of N'(7;)

’o
(23) (V,S)N (1/78)61419@{ and Ordjj(l/) :Ordjj(V/), for1<j <k.

We denote by [(v, s)] the equivalence class of (v, s) in Ay by this relation.

Remarks 8.2.

(i) For any fixed integer so > 0 the set {[(v, s0)] | (v, s0) € A} is finite for 1 < k < d.
(ii) If k = d the equivalence relation defined in the set A, is the equality.

Proposition 8.3. If (v, s), (v, s) € Ay, the following relations are equivalent:
(i) (v,8) ~ (v, 5),
(ii) €5 =€, and v = V]
(iii) JS(H:) = js(H;’)7
(iv) Js(H}) Njs(Hy) # 0.
Proof. The condition (v, s) ~ (', s) implies that £;, = ¢, by Lemma[5.7l The condition ordz, (v) =
ordg, (V') for j =1,...,k is equivalent to v|,, = y" by Lemma [51] It follows that the conditions (i)

05
and (ii) are equivalent. ’

If (i) holds then the basis e;,,...,e; of the vector space introduced in Lemma [5.I] coincides for
the vectors v and ' and (v,e;.) = (V,e;,), for r = 1,..., k. This implies that the inmersion ¢ of
Js(H}) defined for (v,s) in the proof of Theorem [[] is the same map as the one defined for (v, s),
hence 7, (H) = jo ().
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Suppose that (iii) or (iv) holds. If h € H}, b/ € H}, verify that 0 # js(X o h) = js(X® o k') for
some 1 < ¢ < n, then X% o h and X¢ o h’ have the same order (v,e;) = (v, ¢;) < s and those vectors
e; generate the linear subspace ¢5, = ¢3,, hence (ii) holds. O

Notation 8.4. The cone 6 := o x R is rational for the lattice N := N x Z.

() 7 Coand1<k<dweset 7(k) :={(v,s) | v €T NG and ¢p(v) < s < dpp1 ()}
(ii) If 7 € NF_,%; then we set Ay, := 7(k) N N.

Remark 8.5. If 7 is a cone contained in a cone of the fan N¥ %, and if 7(k) # ), then the closure

of 7(k) in & is a convex polyhedral cone, rational for the lattice N (since in this case the functions
ordg,,....ordg, , hence also ¢1,...,¢x , are linear on 7 and the function ordyz,,,, hence also ¢xq1,
is piece-wise linear and convex on 7). In particular, the set Ay, may be empty, for instance, if 7 is
contained in the boundary of o or if for all v in the interior of 7 we have that ¢ (v) = dr11(v).

Remark 8.6. We deduce the following:

(i) A = l—lTEﬂ?,lZiAva for1<k<d.

(ii) The vectors (v, s), (v, s) € Ay are equivalent by the relation ~ in ([23)) if and only if there exists
a cone 7 € N¥_,3; such that v and v/ belong to the relative interior of 7 and ¢;(v) = ¢;(v)
fori=1,...,k.

(i) It follows that A/~ = U,cqr x,Akr/~, where Ag /- is the set of equivalent classes of
elements in the set Ay . by the relation (23).

Proposition 8.7. Ifv 63, s> 1 and 0 < o then the following relations are equivalent:

(i) Js(Hz ) Njs(Hpnor) # 0,
(ii) jS(H/*\,V) C js(HAQOJ-);
(iii) ¢35 C 6+.

Proof. Suppose that (i) holds. Then there is an arc h € H} whose s-jet belongs to js(Hpqgr). If the
truncation j5(X® o h) does not vanish then the vector e; belongs to A N #+. By Definition 5.6 those
vectors e; for which j5(X % o h) # 0 span the linear subspace £3. This proves the inclusion (iii).
Assume that (iii) holds. Let h € Hy ,. Define an arc h’ € Hyng+ by the semigroup homomorphism
AN o+ — C[[t]], given by e — X¢oh, for e € AN G+. We have that b’ € Hj y. , where v/ is the

restriction of v to M (6, A). Since £3 is contained in 6+ by hypothesis, the vector space 3, associated
to the pair (', s) with respect to AN 6@+ is equal to £5 and the restrictions of v and ¢/ to this subspace
coincide. The inclusion (ii) holds by the argument in the proof of (ii) = (iii) in Proposition O

Proposition 8.8. If1 <k <d and (v,s) € Ay then the following assertions are equivalent:

(1) The intersection js(Hy 5) 0 (Uppg<o Js(Hangs)) is empty.
(ii) The face F, of the polyhedron N (Ji) determined by v is contained in the interior of oV.

Proof. By Proposition 8.7 we have that (i) holds if and only if for any face 6 of ¢ the inclusion ¢ C 6+
implies that § = 0, or equivalently if and only if 5 Nint(c") # 0.

If (ii) holds then 5 Nint(c") # @ by Lemma 5.7 hence (i) holds.

Suppose that (ii) does not hold, that is there exists a vertex w of F, which belongs to a proper
face 0¥ N @+ of the cone oV, for some 0 # # < 0. Such w belongs to Ji, hence it is of the form
w=ej, + -+ ej,. Since e;, belongs to oV it follows that e; must belong to 6+, for r =1,... k. It
follows that ¢35 C 0+ by Lemma 5.7 hence (i) does not hold. O

Definition 8.9. If 1 < k < d we define the set Dy as the subset of cones 7 € ﬂle >.; such that the
face F, of N(Jx) is contained in the interior of oV.

Remark 8.10. Notice that Dy = ﬂle Y. If T € Dy, the set 7(d) is non-empty if and only if TCo.

As a consequence of the results of this Section we have the following Propositions:
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Proposition 8.11. Let us fiz an integer so > 1. The set js,(H3)\ U<y Jso (Hanot) ezpresses as a
finite disjoint union of locally closed subsets, as follows: B

(24) ]so(HX)\ U jso(HAﬁﬁl): |_| |_| |_| jso(HX,v)'

0#£60<o k=1T7€Dy [(v,50)|€AK,+/~
O
If sp > 1 the coefficient of T%° in the auxiliary series P(A) is obtained by taking classes in the

Grothendieck ring in (24), and then using Theorem [71]
For each cone 7 € Dy, we define the auxiliary series:

(25) Po-(0)=@L-1FY Y peordatirs,
521 [(v,8)]€AL,+/~

Proposition 8.12. We have that
d

(26) P(A) =" 3" P-(A).

k=17€Dy

9. THE PROOFS OF THE MAIN RESULTS

In this Section we fix a cone 7 € Dy such that A, # 0 and we describe the rational form of
the series Py (A). For convenience, we do not stress the dependency on the cone 7 in the notations
introduced in this Section.

We denote the closure of 7(k) by 7. By Remark 85 the functions ¢, ..., ¢ are linear on 7. More

precisely, if v €7 we consider the vectors €iys - - -, i, introduced in Proposition Then we deduce
that ¢, (v) = (v,e;,) for 1 <r <k and for all v € 7, since 7 is a cone in the fan NF_, %,

Notation 9.1. Let us define the lattice homomorphisms
7N — ZF1 by (v,8) = ((vyeiy)y .y (V,€4,.), 8),
C:ZMY S22 by a=(ar,...,ak01) — (kags — Sor_q r, akg),

We set also £ := (om: N — Z2. We abuse of notation by denoting by the same letter the linear
extension of these maps to the corresponding real vector spaces.

Notice that the intersection of the kernel of 7 (and also of &) with the cone 7 is {0}.
Remark 9.2. If (v,s) # (0,0) belongs to a ray in 7 then £(v, s) # (0,0) and

(Pk(v), or(v)) it s=¢u),
Ew,s) =4 (Yrt1(v), ¢p1(v)) if k#dand s = ¢ry1(v),
(ds, ) if k=dandv=0.

It follows from Remark and Corollary 5.3 that 7 := £(7) C R, and 7 := n(7) C nggl are
strictly convex and rational for the lattices Z? and Z*+! respectively. Hence the map of C-algebras
Gt C[[F NZM1)] = C[[Z%,]] = C[[L,T]]  given by X rs LFert1— oo arorss,

fora = (a1, ...,apys1) is well defined. If B € 7NZF! the generating function Fg := >
to the ring C[[7 N ZF*+1]].

acn X belongs

Lemma 9.3. The sets A, Ay, := 7(Ag..) and flkﬂ. = &(Ag,r) are subsemigroups, not necessarily
of finite type of # N N, Zg‘gl and Z2ZO respectively. The restriction m 4, =t Ak — Ay, induces a
bijection Agr/~ — Akr, by [(v,5)] = 7(v,s) (see Definition[81). We have Py, (A) = ((Fj, ).

Proof. The result follows from Definition Bl Remark and the previous discussion. a

Notation 9.4. If p C 7 is a one-dimensional cone rational for the lattice N we denote by v, the
primitive integral vector on p, that is, the generator of the semigroup p N V.
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Proposition 9.5. If1 <k <d—1 there exists Ry € Z[L,T] such that:

dimp=1 dimp=1,¢x+1(vp)#dr(vp)
(27) Por(A) = Rpr H (1— L‘Ilk(l'p)Tm(Vp))*l H (1— L‘I’k+1(l’p)T¢k+1(l’p))*1,
p<T PEXk41,pCT

If k = d then (273) holds by replacing the term Hiier;p;i’z"ct}(l’”#m(””)(1 _ L‘I‘k+1(l’p)T¢k+1(Vp)) by
(1—L4T). Both numerator and denominator in (Z7) are determined by the lattice M and the Newton

polyhedra of the logarithmic jacobian ideals.

Proof. We call the set 0_7 = {(v,¢r(v)) | v € 7} the lower boundary of 7. The set J_7 is a
convex polyhedral cone of dimension d. We deduce that Ay, = (Akr NO_7) U (Ag,» Nint(7)). The
sets Ap,r NO_7 and Ay - Nint(7) consist of the integral points for the lattice N in the cones d_7
and 7, respectively. It is easy to see that if (v,s) € Ag, NO_7 and if (VV',s) € A . Nint(7) then
[(v,s)] # [(V/,8")] (see Notation B4 and ([23)). It follows that Ay, = m(Ax ., NO_7) Um(Ak, Nint(7)).
We set AZ)T = 7(Ag,» Nint(7)) and A,;T = 7(Ag,r NO_7). It follows that
(28) Prer(A) = (L= 1" (G(Fag )+ G (Fs- ).

s T 5T

The semigroups AZ)T and A,;T are the images by 7 of the semigroups of integral points in the
relative interiors of the cones 7 and 0_7, respectively. We apply Theorem [[24] (see Section [[2) using
that the kernel of 7 intersects the cone 7 only at 0.

It follows that the denominator of the rational form of F' Ag (resp. of F' AZT) is the product of terms

1 — X™®) for b running through the primitive integral vectors in the edges of 7 (resp. of d_7) while
the numerator is a polynomial in Z[7NZ**1]. The rational form of Py . (A) is the image of the rational
form of FAZ,T + F i by the homomorphism (. since the image by (. of the denominator does not
vanish by Remark

If 1 <k <d-—1andif pis an edge of 7 which is not contained in d_7 then it is necessarily of the
form p = (v, ¢p41(v)) for v €7 in some edge of Yk+1. If k = d the only edge of 7 which is not contained
in _7 is (0,1)R>¢. Finally by this discussion and Remark [0.2 the denominator of this rational form

is as indicated in (27]). O
Remarks 9.6.
(i) For k =1,...,d — 1 and 7 € Dy, the factor 1 — LT does not appear in the denominator of
Py, - (N).

(ii) The factors in the denominator of the rational form (Z7) of Py ,(A) are of the form 1 — LeT?
with (a,b) € B(A). We use that UleEl(-l) is the set of rays in the fan N¥_,%; and Definition
3.9

(iii) The term 1 — LT appears in the denominator of P, .(A) with multiplicity one.

Proof of Proposition [J-3 If d = 1 then the toric variety Z* is a monomial curve. Let v be the
generator of the semigroup 0 NN = Zx>. The monomial curve Z A is parametrized by x; = t™, where

m; := (g, e;), for i = 1,...,n. The multiplicity of Z* at 0 is m = min;—1___,{(vo,e;)} = ord 7 (10)-
By Definition B4} the set Ay is 41 = {(v,s) | v = rvy, 0 < mr < s}. By Theorem [T1]it follows
that P(A) = 3 gy, (L = DL T = g =

Proof of Theorem [{.9, The lattice M and the Newton polyhedra of the ideals J, determine and
are determined by duality by N and the functions ordy,, for k¥ = 1,...,d. The proof follows from
Propositions 0.5 Formula (26]) and Remark O

Proof of Corollary[.10 It is a consequence of Theorem 1.9, Proposition {1l and Example O

Proof of Corollary[4-11] Nicaise observed in [N1] that the motivic Poincaré series of an affine normal
toric variety Z* has an expansion in terms of the local motivic Poincaré series at the distinguished
points of the orbits, namely:

AN codimf zh,
Plom(T) = > (L — 1) piZ oo)(T).

geom eom
<o
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For each @ < o there exists an open set of Z* containing the distinguished point o of the orbit orbg,
which is isomorphic to orb(/,\ x Z% where Ay = oy N My is the image of A by the canonical map
M — M/M N6+ (see [F] page 29). It follows that the germ (Z*,0g) is analytically isomorphic to

(Z2®)0). O
Proof of Corollary[{.13 It follows from Theorem [£.9 and Example .4 by taking into consideration
that if p is a ray of ¥; and if v, €0 then we get ¢ (vp) = ¢2(vp), thus ¥y (v,) = Us(v,) = 0. O
Proof of Proposition [{.17 It follows from the definitions by using (I5]) and (). O

10. MOTIVIC VOLUME OF A TORIC VARIETY

We give a formula for the motivic volume u(Hy) of the space of arcs Hy of the toric variety Z* in
terms of the support function ordz,. This formula generalizes the one given in [LJ-R].

If 7 € ¥4 we denote by 7, : Z[t N N] — Z[L*!] the ring homomorphism defined by 7, (z") =
L-0'd7,() The generating function F.__ has a rational form Fo o =Rs o Hﬁg”zl(l —zv)7L
for some R, € Z[r N N]| (see Proposition [2.2).

Proposition 10.1.
TEX dim p=1

p(Hy) = (L —1)4 Z nT(RT"mN) H (1- L—ord]d(u,,))_l
PNGAD p<T

Proof. By Theorem 1] (see [D-L1]) we have that the limit p(Hp) = limy, o0 [jm (HA)]JL™™% con-

~ A
verges in M. We deduce that u(Hp) = ((1— LdT)PéeZon;O) (T))7=L-4, by comparing with the definition
of the series Péezo?ﬁo), taking into account that 1 — LT is a simple pole of Pég)j:,’lo) by Propositions [4.1]
and Remark By Proposition 23] the equality u(Hy) = p(Hj}) holds. By Remark the term
1 — LT does not define a pole of P (A) for k =1,...,d — 1, hence pu(Hp) = ((1 — LIT)Py(A))

lp—p—d
and
TEXY d TEYY
pH) = 3 S @)L S @yt S (R (@),
PNG£D vEFNN TNEAD
Notice that n.(z*») # 1 if v, is a primitive vector in a ray of p € X; (see Remark BI0). We deduce
dim p=1 — o)\ —
tha‘t nT(Fq‘EmN) = nT(RﬁmN) HpSTp (1 - L Ordjd( p)) 1‘ D

We deduce a formula for the motivic volume of the space of arcs H(Z*) of Z* (without fixing the
origin of the arcs) in terms of the local data, as a consequence of Proposition [[0.1] and Corollary 111
The same formula also holds if Z# is locally analytically unibranched (see [C]).

Proposition 10.2. If Z» is an affine normal toric variety then we have that

p(H(Z2)) =7 (L= 1) (1, ).
<o

11. GEOMETRICAL DEFINITION OF THE LOGARITHMIC JACOBIAN IDEALS

We introduce the geometrical definition of the k'"-logarithmic jacobian ideal of an affine toric variety
Z" of dimension d for 1 < k < d, following [O] Chapter 3, and [LJ-R] Appendix. We denote by D the
equivariant Weil divisor defined by the orbit closures of codimension one in Z*. We denote by €, the
C[A]-module of Kihler differential forms of Z* (over C). The module Q2 (log D) of one forms on Z*
with logarithmic poles along D is identified with C[A] ®z M and we have a map of C[A] modules:

©:Qp = Qa(logD), dX7"+— X7 ®~, for v € A.

If1 <k<dweset AFp:Qk = Qk(logD), dX" A AdXV* s X HN% @ (4 + - 4 3), for
7; in A, where QF (log D) is identified with C[A] ®z A" M. For k = d, fixing a basis uy, ..., ug of the
lattice M provides an isomorphism

G:NM—>Z, urA...ANug—1,
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which is, up to sign, independent of the choice of the basis.

Definition 11.1. The k*"-logarithmic jacobian ideal of Z* is the ideal of C[A] generated by the set
SAFQ(QF) A NTH M),

Proposition 11.2. The k*-logarithmic jacobian ideal of Z™ is the monomial ideal Jy defined by (),
fork=1,...,d.

Proof. The proof follows from the definitions since 2, is generated by dX ¢, for ey, ..., e, generators
of the semigroup A. O

The Nash blowing up v : Ng — S of an algebraic variety S is the minimal proper birational map
such that v*Q} has a locally free quotient of rank dim S. The fibers of v at a point z € S are the
limiting positions of tangent spaces at smooth points of S tending to the point z.

Proposition 11.3. ([GS| [LJ-R, [T]) The blowing up of Z™ with center its d*"-logarithmic jacobian
ideal Jy is the Nash blowing up of Z™.

12. GENERATING FUNCTIONS OF PROJECTIONS OF SUBSET OF CONES

In this Section we state some auxiliary results on the generating function of certain subsets of
integral points in a rational polyhedral cone. See [Br, [B-P| [I] for an expository papers on this and
related subjects. The content of this section is independent of the rest of the paper.

Let N € R? be a rank d lattice and 7 strictly convex cone rational for the lattice N.

Definition 12.1. The generating function of a set B C 7 N N is the series Fp(z) = > ,cpx® €
Z[[TNN]]. The series Fp(z) is rational if there exist p(x), ¢(x) € Z[T N N] such that ¢(z)Fg(z) = p(z).
In that case the ratio p(x)/q(x) is well-defined and it is called the sum of the series Fg(z).

We denote by v, the generator of the semigroup pNV for each edge p of 7. The following Proposition
is well-known (see [I] Section 4.6).

Proposition 12.2. The generating function F;ﬂN(I) s of the form:

_ 1,

(29) Fo @) =Re o [[ (—a")"", with Ry €ZlrNN].
p<7,dim p=1

Remark 12.3. The statement of Proposition[I2.2 remains true if we replace the vector v, by a non-zero

vector in p N N for each edge p of 7.

Let m: N — Z" be a map of lattices for some 1 < r < d. We abuse of notation by denoting with
the same letter the extension of 7w to a map of real vector spaces Ng — R". We suppose that

(30) 7N ker T = {0}.

This condition implies that the cone 7 := m(7) is strictly convex. For simplicity we set A :=7 NN and
A :=m(A). The sets A and A are subsemigroups, not necessarily of finite type, of 7N N and 7N Z"
respectively. Notice that for each edge p of T there exists at least one edge p of 7 such that 7(p) = p,
hence we have that

(31) 0#m(v,) epnNZ.
Theorem 12.4. The generating function Fz(z) of A is of the form:
(32) Fs(z)=Rj; H (1 — 2™~ with some Rs € Z[7 N Z").

p<T,dim p=1

We introduce some notations and results before proving Theorem 2.4

If a # b € Nq we define the length with respect to N of the segment joining a and b by lg(a,b) :=r
if a—b=rc where r € Qs and ¢ € N is a primitive vector.

We denote by A and B the following sets:

A={pedgeof 7| dimm, ' (p)N7 =1} and B={pedgeof 7| dimm, ' (p) N7 > 1}.
Lemma 12.5. Ifr < d and p € B then there exists g € p N Z" such that (tip + int(7)) N N C A.
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—~l

cl

Q(w)

FIGURE 1. The shaded region is the preimage by 7y of the segment containing @ in the Figure.

Proof. If @ € 7 we denote by Q (@) the set Q(a@) := 7, ' ()N (see Figure[l). If 4 € TNZ" then Q(a)
is a rational polytope for the lattice N. We denote by p(@) the ray spanned by the sum of all the vertices
of the polytope Q(@), by b(@) the vector Q(@) Np(@) and by §(@) the number §(@) := max{lg(v, b(a))},
for v running through the vertices of Q(u). Notice that if ¢ € R>¢ then we have that p(t4) = p(u) and
(33) Q(tu) =tQ(u), b(tu) =tb(u), o(tu)=té(u).

If p € Band @ € pNZ" then the polytope Q(@) is of dimension > 1 by definition of B, hence §(a) > 0.
Let @g be a vector in p N Z" such that §(@p) > 1.

A vector w € (tig + int(7)) N Z" is of the form @ := %y + ¥, with ¥ € int(7) N Z". By linearity of 7
we have the inclusion
39 Qi) +Q(r) < Qo).

Since 7 maps int(7) onto int(7) the polytopes Q(?) and Q(w) are of dimension d — r > 1. Thus,
there exists a vector v € Nq such that v € int(Q(v)), where int denotes the relative interior. By
(B4) we obtain v + int(Q(dp)) C int(Q(w)). Since §(ig) > 1 it follows that Q(w) contains a rational

segment v + I of integral length > 1. Hence Q(w) contains a point w of the lattice N in the set
int(Q(w)) C int(7). It follows that @ = 7(w) belongs to A. O

Proof of the Theorem We deal first with the case of a simplicial cone 7. In this case we denote
A={p1,...,0a} and B ={pat1,..., Patb}, where a,b >0 and a + b = dim 7.

If p; € B we denote by i, the vector ; € p;NZ" such that (i; +int(7))NZ" C A (see Lemma [[ZH).
The set S :=J, ¢p(t; +int(7)) N Z" is contained in A If S":= A\ S then Fg(z) = Fs(z) + Fs: ().

We deal first with the rational form of Fg(x). If ) # J C B we set Ry :=), ¢ ;(u; +int(7)) N Z".
Notice that Ry = (u; +int(7)) N Z", where 4y :=} . ;u;. By Proposition I2.2] the series Fg, (z) =
1% Fipe(7)nzr () is of rational form. By Remark and Formula (3] its denominator can be taken
as in (32)). By the inclusion-exclusion principle we deduce that Fs(x) has a rational form as indicated
in the statement of Theorem [[2:4]

If p; € A we denote by p; the edge of 7 such that 7(p;) = p;, for j =1,...,a. To study the rational
form of Fs/ () we set

a b
G={)_Nm(Wp)+ > pjlia; | 0< Xyt <1, for 1 <i<a, 1<j<b}.

i=1 j=1
If i = (n1,...,n4) € Z, we denote by Cj the set Cy := nim(v,, ) + -+ +nam(vp,) + G and by ki the
integer k; := #(Cx N A), where # denotes cardinal. Then we have a partition
(35) S'= || canA
REZL,
If i € Z¢, we have the bound:
(36) ke < #(GNZ).
Denote by {€7,...,€,} the canonical basis of Z*. We have that
(37) ki <kiye, for1<j<aandieZs,.
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We deduce from (B6) and ([B7) that there exists m € Z~ such that kz = ko for all 77 € Z%, such that
n; > m for some 1 < j < a. If 77 verifies this condition and if 1 < ¢ < a we have the equality:

(38) CinNA+n(vy,)=(Cire)NAforl<i<a.

We deduce from these observations and (B3] that

Fs/ (z) = Z Z ¥+ Z Z x”.

V1<i<a:0<n;<m peCzNA 31<i<a:m<n; peCzNA

The first term is a finite sum, while the second is of the form R(x)[[j_,(1 — 2™ 2i)) =1 for some
R(z) € Z]x], by B8) and a similar argument as the one used for Fg(z).
If 7 is not simplicial, let ¥ be a simplicial subdivision of 7 such that every edge of ¥ is an edge of
7 (see Chapter V, Theorem 4.2, page 158 [Ew]). If § € ¥ the set § := 7~ () N 7 is a rational cone for
the lattice N and 6 Nker(m) = (0). We have that m(int(0)) = int(9) and «(int(8) N N) = A N int().
By the assertion in the simplicial case Fzqin(g) (x) has a rational form as in the statement of the
Theorem. The result follows since Fjz(2) = > 5c5 Faning)(®)- O

13. AN EXAMPLE

We consider the semigroup A generated by e; = (3,0),e2 = (0,6),e3 = (5,0),e4 = (1,1),e5 = (2,1)
and eg = (1,4). With notations of Section [ the cone o is R2, the lattice M is Z? and the semigroups
ANG; fori = 1,2 are ANOF = (0,6)Z>o and ANy = (3,0)Z>0+ (5,0)Z>0. The Newton polyhedron
of J1 (resp. of J») has vertices e1, e4 and es (resp. e1 + ey, e4 + e5 and e + e4), see Figure

(1,2)R>0  (1,1)Rsg

€2

(57 Z)RZO

eq + e;5 (5, 1)RZO
€1
€1

€4

€4

FI1GURE 2. The Newton polygons of 77 and J5 and the subdivision »; N X9

The surface Z» is defined by binomial equations in AY,. The normalization of the germ (Z%,0)
is smooth. Notice that in this case there is no Hirzebruch-Jung data from the minimal resolution
(compare with the results of [LJ-R] in the case of a normal toric surface singularity).

A
By Proposition 1] Pg(eZOH;O) (T) is equal to
PZO(T) = (1= T)~1 + P(AN6L) + P(AN6L) + P(A).
By Proposition 3 we get P(AN6{) = {275+ and P(AN6y) = %% The sum of P(A) is of
the form Qa [T, p)ep(a) (1 —LaT?) =t where Q4 € Z[L, T]. The set B(A) = {(2,1), (1,1), (0,3), (0,6),
(1,3), (5,12)} is determined easily from the table below in which we give the values of the functions
®1, @2 and W, for the primitive vectors in the rays p of 31 N Xs.

(1,0) 1 (0,1) | (1,2) | (5,1) | (1,1) | (5,2)
61| O 0 3 6 2 7
b | 1 1 3 6 3 12
T, | 1 1 0 0 1 5

We have that D; = {7} where 7 = (1,2)R>0 + (5,1)R>¢ € X1 (see Definition B9). We have
that Dy = X1 NXy and P(A) = Py -(A) + P2(A), where Pa2(A) := 2962 s, Sl P, 9. We determine
1 2,0C0
the rational form of P»(A) by computing first the rational form of the generating series FSON’ for
0 € ¥ NYy with 5 N 37& (). Then we apply to each term FgmN a suitable monomial transformation

(see the proof of Propositions and [[2.2). We check that
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_ (L-1)? LT* T3 LT LT?
P(A) = Tr \mema + o T oo T et
+L2T5+L4T10+L6T15 L5T12 —"_ L2T6+LTG+L4T12+L3T12+L5T18 + TG + LT7
I-_LT3)(1-L3T12) T T_L5T12 (I-L5T12)(1_79) 170 T [1—T%)(1-LT) )

We determine the term P; - (A) (see Proposition [0.5). The cone 7 is associated to the vertex e4 of
N(J1) and it is subdivided by X5 with the rays p1 = (5,2)R>0 and p2 = (1,1)R>(. We describe first
the generating function F(z) of the semigroup A = {(¢1(v),s) € Z2 | v €7 NN, ¢1(v) < s < ¢a(v)}
(see Figure B)).

1 2 3 4 5 6 7 8 91011 12

FIGURE 3. The black (resp. white) circles denote elements of A (resp. of (7 N Z?)\ A).

We have that A is a subsemigroup of 7 N Z2 where 7 = R>o(1,1) + R>(7,12). We set G’ :=
{(0,0),(2,3),(3,5),(5,8),(6,10)} and G := G’ U{(1,1), (4,6)}. We have the partitions:

(TNZ)\A=|],50G+p(7,12) and 7 N Z*> = u(p)q)ezzzo G'+p(1,1) +q(7,12).
We deduce that Fg = Frnzz — Fiznz2)\ 4 hence
Fi=(1—zfz3’)"" (Z(i,j)eG Ill‘ré + (Z(i,j)eG/ Ilixg)(l - 351172)71)-

To get the series P -(A) we apply to F; the ring homomorphism which maps z{x) — L/=¢T7 and
then we multiply the result by L — 1.

A
We check that none of the candidate poles of Pg(CZOH;O) (T) cancels. The motivic volume is

- _ L8416 _
p(Hp) = (L — 1)2((1—L)(11—L19) + 1—L119 + (1iJI:19)J(r1—L5) + 1—11,5 + (1—L5§(1—L))'
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