Repositorio de producción científica de la Universidad de Sevilla

On a conjecture by Kauffman on alternative and pseudoalternating links

Opened Access On a conjecture by Kauffman on alternative and pseudoalternating links

Citas

buscar en

Estadísticas
Icon
Exportar a
Autor: Silvero Casanova, Marithania
Departamento: Universidad de Sevilla. Departamento de álgebra
Fecha: 2015-06
Publicado en: Topology and its Applications, 188, 82-90.
Tipo de documento: Artículo
Resumen: It is known that alternative links are pseudoalternating. In 1983 Louis Kauffman conjectured that both classes are identical. In this paper we prove that Kauffman Conjecture holds for those links whose first Betti number is at most 2. However, it is not true in general when this value increases, as we also prove by finding two counterexamples: a link and a knot whose first Betti numbers equal 3 and 4, respectively.
Cita: Silvero Casanova, M. (2015). On a conjecture by Kauffman on alternative and pseudoalternating links. Topology and its Applications, 188, 82-90.
Tamaño: 539.4Kb
Formato: PDF

URI: http://hdl.handle.net/11441/47464

DOI: 10.1016/j.topol.2015.03.012

Ver versión del editor

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones