Repositorio de producción científica de la Universidad de Sevilla

On abelian subalgebras and ideals of maximal dimension in supersolvable Lie algebras

Opened Access On abelian subalgebras and ideals of maximal dimension in supersolvable Lie algebras

Citas

buscar en

Estadísticas
Icon
Exportar a
Autor: Ceballos González, Manuel
Towers, David A.
Departamento: Universidad de Sevilla. Departamento de Geometría y Topología
Fecha: 2014-02
Publicado en: Journal of Pure and Applied Algebra, 218 (3), 497-503.
Tipo de documento: Artículo
Resumen: In this paper, the main objective is to compare the abelian subalgebras and ideals of maximal dimension for finite-dimensional supersolvable Lie algebras. We characterise the maximal abelian subalgebras of solvable Lie algebras and study solvable Lie algebras containing an abelian subalgebra of codimension 2. Finally, we prove that nilpotent Lie algebras with an abelian subalgebra of codimension 3 contain an abelian ideal with the same dimension, provided that the characteristic of the underlying field is not two. Throughout the paper, we also give several examples to clarify some results.
Cita: Ceballos González, M. y Towers, D.A. (2014). On abelian subalgebras and ideals of maximal dimension in supersolvable Lie algebras. Journal of Pure and Applied Algebra, 218 (3), 497-503.
Tamaño: 144.4Kb
Formato: PDF

URI: http://hdl.handle.net/11441/42618

DOI: http://dx.doi.org/10.1016/j.jpaa.2013.06.017

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones