
ar
X

iv
:1

11
0.

23
89

v3
  [

m
at

h.
R

A
] 

 5
 J

un
 2

01
3

ON ABELIAN SUBALGEBRAS AND IDEALS OF MAXIMAL
DIMENSION IN SUPERSOLVABLE LIE ALGEBRAS

Manuel Ceballos 1

Departmento de Geometria y Topologia, Universidad de Sevilla
Apartado 1160, 41080, Seville, Spain

and
David A. Towers

Department of Mathematics, Lancaster University
Lancaster LA1 4YF, England

Abstract

In this paper, the main objective is to compare the abelian subalge-
bras and ideals of maximal dimension for finite-dimensional supersolv-
able Lie algebras. We characterise the maximal abelian subalgebras
of solvable Lie algebras and study solvable Lie algebras containing an
abelian subalgebra of codimension 2. Finally, we prove that nilpotent
Lie algebras with an abelian subalgebra of codimension 3 contain an
abelian ideal with the same dimension, provided that the characteristic
of the underlying field is not two. Throughout the paper, we also give
several examples to clarify some results.
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1 Introduction

Nowadays, there exists an extensive body of research of Lie Theory due
to its own importance from a theoretical point of view and also due to its
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applications to other fields like Engineering, Physics and Applied Mathe-
matics. However, some aspects of Lie algebras remain unknown. Indeed,
the classification of nilpotent and solvable Lie algebras is still an open prob-
lem, although the classification of certain other types of Lie algebras (like
semi-simple and simple ones) were already obtained in 1890, at least over
the complex field. In order to make progress on these and other problems,
the need for studying different properties of Lie algebras arises. For exam-
ple, conditions on the lattice of subalgebras of a Lie algebra often lead to
information about the Lie algebra itself. Studying abelian subalgebras and
ideals of a finite-dimensional Lie algebra constitutes the main goal of this
paper.

Throughout L will denote a finite-dimensional Lie algebra over a field F .
The assumptions on F will be specified in each result. Algebra direct sums
will be denoted by ⊕, whereas vector space direct sums will be denoted by
+̇. We consider the following invariants of L:

α(L) = max{dim(A) |A is an abelian subalgebra of L},

β(L) = max{dim(B) |B is an abelian ideal of L}.
Both invariants are important for many reasons. For example, they are
very useful for the study of Lie algebra contractions and degenerations.
There is a large literature, in particular for low-dimensional Lie algebras,
see [9, 6, 13, 15, 8], and the references given therein.

The first author dealing with the invariant α(g) was Schur [14], who
studied in 1905 the abelian subalgebras of maximal dimension contained
in the Lie algebra of n × n square matrices. Schur proved that the max-
imum number of linearly independent commuting n × n matrices over an

algebraically closed field is
[

n2

4

]

+ 1, which is the maximal dimension of

abelian ideals of Borel subalgebras in the general linear Lie algebra gl(n) (
where [x] denotes the integer part of a real number x). Let us note that
this result was obtained only over an algebraically closed field such as the
complex number field. Almost forty years later, in 1944, Jacobson [10] gave
a simpler proof of Schur’s results, extending them from algebraically closed
fields to arbitrary fields. This fact allowed several authors to gain insight
into the abelian subalgebras of maximal dimension of many different types
of Lie algebras.

More specifically, for semisimple Lie algebras s the invariant α(s) has
been completely determined by Malcev [12]. Since there are no abelian
ideals in s, we have β(s) = 0. The value of α for simple Lie algebras is
reproduced in table 1. In this paper, we will study several properties of
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these invariants and compare them for supersolvable, solvable and nilpotent
Lie algebras.

Table 1: The invariant α for simple Lie algebras

s dim(s) α(s)

An, n ≥ 1 n(n+ 2) ⌊(n+1
2 )2⌋

B3 21 5

Bn, n ≥ 4 n(2n+ 1) n(n−1)
2 + 1

Cn, n ≥ 2 n(2n+ 1) n(n+1)
2

Dn, n ≥ 4 n(2n− 1) n(n−1)
2

G2 14 3

F4 52 9

E6 78 16

E7 133 27

E8 248 36

We shall call L supersolvable if there is a chain 0 = L0 ⊂ L1 ⊂ . . . ⊂
Ln−1 ⊂ Ln = L, where Li is an i-dimensional ideal of L. The ideals L(k) of
the derived series are defined by L(0) = L,L(k+1) = [L(k), L(k)] for k ≥ 0;
we also write L2 for L(1) and L3 for [L2, L]. It is well known that every
supersolvable Lie algebra is also solvable. Moreover, these classes coincide
over an algebraically closed field of characteristic zero (Lie’s theorem). There
are, however, examples of solvable Lie algebras over algebraically closed field
of non-zero characteristic which are not supersovable (see for instance [11,
page 53] or [3]). The Frattini ideal of L, φ(L), is the largest ideal of L
contained in all maximal subalgebras of L. We will denote the centre of L
by Z(L) = {x ∈ L : [x, y] = 0, ∀ y ∈ L} and the centralizer of a subalgebra
A of L by CL(A) = {x ∈ L : [x,A] = 0}. Given a subalgebra A of L, the
core of A, denoted by AL, is the largest ideal of L contained in A. The
abelian socle of L, AsocL, is the sum of the minimal abelian ideals of L.

The structure of this paper is as follows. In section 2 we give some
bounds for the invariants α and β. In section 3, we consider the classes
of supersolvable, solvable and nilpotent Lie algebras L with α(L) = n − 1
or n− 2. In particular, we characterise n-dimensional solvable Lie algebras
L for which α(L) = n − 2 and prove that every supersolvable Lie algebra,
L, of dimension n with α(L) = n − 2 also satisfies β(L) = n − 2. In the
final section we show the α and β invariants also coincide for nilpotent Lie
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algebras L with α(L) = n − 3, provided that F has characteristic different
from two. We also give an example to show that the restriction on F is
necessary.

2 Some bounds on α(L) and β(L)

We shall call a L metabelian if L2 is abelian. First we have a bound on β(L)
for certain metabelian Lie algebras.

Proposition 2.1 Let L be a metabelian Lie algebra of dimension n, and
suppose that dimL2 = k. Then dim(L/CL(L

2)) ≤ [k2/4] + 1. If, further, L
splits over L2 then β(L) ≥ n− [k2/4] − 1.

Proof. Let ad : L → Der L2 be defined by adx(y) = [y, x] for all y ∈ L2.
Then ad is a homomorphism with kernel CL(L

2). It follows that L/CL(L
2) ∼=

D where D is an abelian subalgebra of Der L2 ∼= gl(n, F ). It follows from
Schur’s Theorem on commuting matrices (see [10]) that dim(L/CL(L

2) ≤
[k2/4] + 1.

Now suppose that L = L2 ⊕ B where B is an abelian subalgebra of L.
Then CL(L

2) = L2 ⊕B ∩ CL(L
2) which is an abelian ideal of L. �

We call L completely solvable if L2 is nilpotent. Over a field of charac-
teristic zero, every solvable Lie algebra is completely solvable. Next we note
that if L is completely solvable, has an abelian nilradical (so is metabelian)
and the underlying field is perfect then α(L) and β(L) are easily identified.
If F̄ is the algebraic closure of F we put S̄ = S ⊗F F̄ for every subalgebra
S of L.

Lemma 2.2 α(L̄) ≥ α(L), β(L̄) ≥ β(L).

Lemma 2.3 Let L be any solvable Lie algebra with nilradical N . Then
CL(N) ⊆ N

Proof. Suppose that CL(N) 6⊆ N . Then there is a non-trivial abelian ideal
A/(N ∩CL(N) of L/(N ∩CL(N) inside CL(N)/(N ∩CL(N). But now A3 ⊆
[A,N ] = 0, so A is a nilpotent ideal of L. It follows that A ⊆ N ∩ CL(N),
a contradiction. �

Theorem 2.4 If F is a perfect field and L is a completely solvable Lie
algebra with abelian nilradical N then α(L) = β(L) = dimN .
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Proof. It is clear that N is the unique maximal abelian ideal of L. Let
A be an abelian subalgebra of L of maximal dimension. If N ⊆ A, then
A ⊆ CL(N) = N , by Lemma 2.3, so N = A and the result is clear, so
suppose that N 6⊆ A and put U = N +A.

Consider first the case where F is algebraically closed and φ(L) = 0.
Pick any a ∈ A and put C = N + Fa. Then φ(C) = 0, by [18, Theorem
2.5], so N ⊆ N(C) = Asoc(C) by [17, Theorem 7.4], and N is completely
reducible as an Fa-module. Write N = ⊕k

i=1Ni, where Ni is an irreducible
Fa-module for 1 ≤ i ≤ k. Then the minimal polynomial of the restriction
of ad a to Ni is irreducible for each i, and so {(ada)|N : a ∈ A} is a set of
commuting diagonalizable operators. Thus N = AsocL = Fn1 + . . . Fnr,
where Fni is a minimal ideal of L for 1 ≤ i ≤ r. If ni ∈ A, then CU (ni) = U ;
if ni /∈ A then dimCU (ni) ≥ dimU − 1, since U/CU (ni) ∼= D, where D is a
subalgebra of Der Fni. But

N = CL(N) ⊇ CU (N) =
r
⋂

i=1

CU (Fni),

so
dimN ≥ dimU − (r − dim(N ∩A)) = dimA,

and the result holds in this case.
So suppose now that φ(L) is not necessarily trivial. Then N/φ(L) is

the nilradical of L/φ(L), by [17, Theorem 6.1], and so L/φ(L) has abelian
nilradical. Also (A + φ(L))/φ(L) is an abelian subalgebra of L/φ(L). It
follows from the above that

dim

(

A+ φ(L)

φ(L)

)

≤ dim

(

N

φ(L)

)

, whence dimA ≤ dimN.

Finally consider the case where F is not necessarily algebraically closed.
Since F is perfect, N(L) = N(L̄), by [4, page 42]. Hence

β(L) ≤ α(L) ≤ α(L̄) = β(L̄) = dimN(L̄) = dimN(L) = dimN(L) = β(L)

by Lemma 2.2 and the above. �

We obtain bounds for supersolvable Lie algebras by following a develop-
ment similar to [16, Lemma 2].

Lemma 2.5 Let L be a supersolvable Lie algebra and let A be a maximal
abelian ideal of L. Then CL(A) = A.
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Proof. We have that CL(A) is an ideal of L. Suppose that CL(A) 6= A. Let
B/A be a minimal ideal of L/A with B ⊂ CL(A). Then, for some b ∈ B,
B = A+Fb, which is an abelian ideal of L, contradicting the maximality of
A. The result follows. �

Proposition 2.6 Let L be a supersolvable Lie algebra, A any maximal
abelian ideal of L. Suppose dimA = k. Then L/A is isomorphic to a
Lie algebra of k × k lower triangular matrices.

Proof. Let ad : L → Der A be defined by adx(y) = [y, x]. Then ad
is a homomorphism with kernel CL(A) = A, by Lemma 2.5. Since L is
supersolvable there is a flag of ideals 0 = A0 ⊂ A1 ⊂ . . . ⊂ Ak = A of L.
Choose a basis e1, . . . , ek for A with ei ∈ Ai. With respect to this basis the
action of L on A is represented by k × k lower triangular matrices, since
[Ai, L] ⊆ Ai for each 0 ≤ i ≤ k. �

Corollary 2.7 Let L be a supersolvable Lie algebra with a maximal abelian
ideal A of dimension k. Then dimL ≤ k(k+3)

2 and L has derived length at
most k + 1.

Proof. The Lie algebra of k × k lower triangular matrices has dimension
k(k+1)

2 and derived length k. �

Corollary 2.8 Let L be a supersolvable Lie algebra of dimension n. Then

β(L) ≥
[
√
8n+ 9− 3

2

]

.

Corollary 2.9 Let L be a non-abelian solvable Lie algebra of dimension n
over an algebraically closed field of characteristic zero. Then

[
√
8n+ 9− 3

2

]

≤ α(L) ≤ n− 1.

Proof. Simply use Corollary 2.8 and [7, Proposition 2.5]. �

3 Supersolvable Lie algebras with α(L) = n − 1 or

n− 2

Proposition 3.1 Let A be an abelian subalgebra of a Lie algebra L. Suppose
that K = A + Fe1 is a subalgebra of L, and that there is an x ∈ L such
that [x,K] ⊆ K, but [x,A] 6⊆ A. Then either K is abelian or K2 is one
dimensional and Z(K) has codimension at most one in A.
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Proof. Let e2, . . . , ek be a basis for A such that e1 = [x, e2], say. Let
[x, ej ] =

∑k
i=1 αjiei for 1 ≤ j ≤ k. Then [e2, [x, ej ]] = αj1[e2, e1], so, for

2 ≤ j ≤ k,

0 = [x, [e2, ej ]] = −[e2, [ej , x]]− [ej , [x, e2]] = αj1[e2, e1]− [ej , e1].

Hence [e1, ej ] = αj1[e1, e2]. It follows that K
2 = F [e1, e2]. Put vj = αj1e2 −

ej for 3 ≤ j ≤ k. Then v3, . . . , vk ∈ Z(K) ∩A. �

The above result deals with the case where an abelian subalgebra of
maximal dimension has codimension one in an ideal of L.

Corollary 3.2 Let L be a supersolvable Lie algebra and let A be an abelian
subalgebra of maximal dimension in L. If A ⊂ K where K is an ideal of L
and A has codimension 1 in K, then α(L) = β(L).

Proof. If A is an ideal of L then the result is clear, so suppose that it is not
an ideal of L. With the same notation as in Proposition 3.1 the hypotheses
of that result are satisfied. Then v3, . . . , vk ∈ Z(K); in fact, the maximality
of A gives Z(K) = Fv3 + · · · + Fvk. Let B/(Fv3 + · · · + Fvk) be a chief
factor of L with B ⊂ K. Then B is an abelian ideal of L with the same
dimension as A. The result follows. �

Next we consider the situation where L has a maximal subalgebra that
is abelian: first when L is any non-abelian Lie algebra and F is algebraically
closed, and then when L is solvable but F is arbitrary.

Proposition 3.3 Let L be a non-abelian Lie algebra of dimension n over
an algebraically closed field F of any characteristic. Then L has a maximal
subalgebra M that is abelian if and only if L = A+̇Ff for some f ∈ gl(V ),
where f 6≡ 0, A is abelian and [f, v] = −[v, f ] = f(v). In particular, α(L) =
β(L) = n− 1.

Proof. Suppose first that L has a maximal subalgebra M that is abelian.
If M is an ideal of L we have finished. So suppose that M is self-idealising,
in which case L2 is one-dimensional and φ(L) = 0, by [19, Proposition 3.2].
Write L2 = Fb and note that AsocL = L2 ⊕ Z(L). Now L = AsocL+̇C,
where C is abelian, by [17, Theorem 7.4]. For each c ∈ C we have that
[c, b] = λ(c)b, for some λ(c) ∈ F . Since C ∩ Z(L) = 0, C must be one-
dimensional and the result follows.

The converse is clear. �

The following is a generalisation of [19, Proposition 3.1]
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Proposition 3.4 Let L be a solvable Lie algebra. Then L has a maximal
subalgebra M that is abelian if and only if either

(i) L has an abelian ideal of codimension one in L; or

(ii) L(2) = φ(L) = Z(L), L2/L(2) is a chief factor of L, and L splits over
L2.

Proof. By [19, Proposition 3.1] it suffices to show that if L has a maximal
subalgebra M that is not an ideal then L2 is nilpotent. By maximality, M
is self-idealising, and from solvability there is a k ≥ 1 such that L(k) 6⊆ M
but L(k+1) ⊆ M . Then L = M + L(k), whence L2 ⊆ L(k). It follows that
L(2) ⊆ M and we have M ⊆ CL(L

(2)). By maximality and the fact that M
is self-idealising, we get CL(L

(2)) = L, which yields that L2 is nilpotent. �

Next we characterise solvable Lie algebras L whose biggest abelian subal-
gebras have codimension two in L. The following proof relies on [7, Propo-
sitions 3.1 and 5.1] which are only stated for Lie algebras over fields of
characteristic zero. However, it is easy to see that this assunption is not
used in their proofs, and that the results are, in fact, valid over an arbitrary
field.

Theorem 3.5 Let L be a solvable Lie algebra of dimension n with α(L) =
n − 2, and let A be an abelian subalgebra of dimension n − 2. Then one of
the following occurs:

(i) β(L) = n− 2;

(ii) L = L2+̇B, where B is an abelian subalgebra of L, L2 is the three-
dimensional Heisenberg algebra, L(2) = φ(L) = Z(L) and L2/Z(L) is
a two-dimensional chief factor of L (in which case β(L) ≤ n− 3);

(iii) A has codimension one in the nilradical, N , of L, which itself has
codimension one in L. Moreover, N2 is one dimensional, Z(N) is an
abelian ideal of maximal dimension and β(L) = n− 3.

Proof. Let A be a maximal abelian subalgebra of L of dimension n− 2 and
suppose that (i) doesn’t hold.

(a) Suppose first that A is a maximal subalgebra of L. Then L is as in
Proposition 3.4(ii) and A is a Cartan subalgebra of L. Let L = A+̇L1

be the Fitting decomposition of L relative to A. Then L1 ⊆ L2 and
dimL1 = 2. Let L1 = Fx+ Fy.
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If [x, y] = 0 then L1 is an ideal of L and L/L1 is abelian, so L2 ⊆
L1 ⊆ L2. This yields that L is metabelian and L2 is a two dimensional
minimal ideal over which L splits. It follows from Proposition 2.1 that
β(L) = n− 2, a contradiction.

If [x, y] 6= 0, then L2 = F [x, y] + L1 and F [x, y] ⊆ L(2) = Z(L), so
F [x, y] = Z(L) and we have case (ii). Moreover, if C is a maximal
abelian ideal of L, then Z(L) ⊆ C and L2 6⊆ C. It follows that
C ∩ L2 = Z(L). If dimC = n − 2, then dim(L2 + C) = dimL2 +
dimC − dimC ∩ L2 = 3 + n − 2 − 1 = n, so L = L2 + C. But then
L2 = Z(L), a contradiction. Hence, β(L) ≤ n− 3.

(b) So suppose that A is not a maximal subalgebra of L. Then A ⊂ M ⊂ L,
where dimM = n − 1. Moreover, there is such a subalgebra A of M
which is an ideal of M , by [7, Proposition 3.1]. Suppose first that A
does not act nilpotently on L. Then the Fitting decomposition of L
relative to A is L = M+̇L1, and L1 is a one-dimensional ideal of L.
Put B = A+̇L1, which is an ideal of L. Then CB(L1) has codimension
one in B and so is an abelian ideal of codimension two in L. It follows
that β(L) = n− 2, a contradiction.

Finally, suppose that A is an ideal of M and that A acts nilpotently on
L. Then there is a k ≥ 0 such that L(adA)k 6⊆ M but L(adA)k+1 ⊆
M . Let x ∈ L(adA)k \M , so L = M+̇Fx. Suppose first that M is
not an ideal of L. Then the core of M , ML has codimension one in
M , by [1, Theorem 3.1 and 3.2]. If A = ML then we have case (i),
so suppose that A 6= ML and M = A +ML. Then [A, x] ⊆ M which
implies that [L,A] ⊆ M and [L,M ] = [L,ML] + [L,A] ⊆ M ; that is,
M is an ideal of L.

Let N be the nilradical of L. If N ⊆ A then A ⊆ CL(N) ⊆ N , so
N = A and we have case (i) again. If A ⊂ N then N = L or we can
assume that N = M . If A 6⊆ N and N 6⊆ A then either A + N = L,
in which case L is nilpotent, or we can assume that A + N = M , in
which case M is a nilpotent ideal of L and so M = N .

If L is nilpotent, then we have case (i), by [7, Proposition 5.1].If not,
then we have case (iii) by Proposition 3.1.

�

Corollary 3.6 Let L be a supersolvable Lie algebra of dimension n with
α(L) = n− 2. Then β(L) = n− 2.
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Proof. We use the same notation as in Theorem 3.5 and show that cases
(ii) and (iii) cannot occur. Clearly case (ii) cannot occur, since in that case
L2/Z(L) is a two-dimensional minimal ideal of L/Z(L). So suppose that
case (iii) occurs. Then dimZ(N) = n − 3. Since L is supersolvable, there
is an ideal B ⊂ N of L with dim(B/Z(N)) = 1. But clearly B is abelian,
contradicting the maximality of Z(N). �

Note that algebras of the type described in Theorem 3.5 (ii) and (iii) do
exist over the real field, as the following examples show.

Example 3.1 Let L be the four-dimensional Lie algebra over R with basis
e1, e2, e3, e4 and non-zero products

[e1, e2] = e3, [e1, e3] = −e2, [e2, e3] = e4.

Then this algebra is as described in Theorem 3.5(ii). For L2 = Re2 +Re3 +
Re4 is the three-dimensional Heisenberg algebra, L = L2 ⊕ Re1, L(2) =
Re4 = Z(L) = φ(L), and L2/Z(L) is a two-dimensional chief factor of L.
This algebra has α(L) = 2 and β(L) = 1. We could take A = Re1 + Re4,
for example, but Re4 is the unique maximal abelian ideal of L.

Example 3.2 Let L be the four-dimensional Lie algebra over R with basis
e1, e2, e3, e4 and non-zero products

[e1, e2] = e2 − e3, [e1, e4] = 2e4, [e1, e3] = e2 + e3, [e2, e3] = e4.

Then this algebra is as described in Theorem 3.5(iii). For we could take
A = Re3 + Re4, N = Re2 + A, so N2 = Re4, Z(N) = Re4. We have
α(L) = 2 and β(L) = 1.

4 Nilpotent Lie algebras with α(L) = n− 3

When L is nilpotent of dimension n and α(L) = n − 3 we obtain that
α(L) = β(L), but only when F has characteristic different from two.

Theorem 4.1 Let L be a nilpotent Lie algebra of dimension n, over a field
F of characteristic different from two, with α(L) = n−3. Then β(L) = n−3.

Proof. Let A be an abelian subalgebra of L with dimA = n− 3, let N be
a maximal subalgebra containing A and suppose that A is not an ideal of
L. Then N is an ideal of L, and A is a maximal abelian subalgebra of N

10



of codimension 2 in N . By [7, Proposition 5.1] we can assume that A is an
ideal of N . Let e4, . . . , en be any basis for A and L = Fe1 + N . We may
suppose that e3 = [e1, e4] /∈ A; set M = Fe3 + A. If [e1,M ] ⊆ M , then
M is an ideal of L, and the result follows from Corollary 3.2. Hence there
exists k such that e2 = [e1, ek] /∈ M where 3 ≤ k ≤ n and k 6= 4. Clearly,
N = Fe2 +M . Let [e1, ej ] =

∑n
i=2 αjiei for 2 ≤ j ≤ n. Then,

[e3, ej ] = [[e1, e4], ej ] = −[[e4, ej ], e1]− [[ej , e1], e4] (1)

= αj2[e2, e4] + αj3[e3, e4] for j ≥ 4. (2)

Put uj = ej−αj3e4 for j ≥ 5. Then [e3, uj ] = αj2[e2, e4] for j ≥ 5. Therefore,
we can choose the elements e5, . . . , en in our basis so that

[e3, ej ] = αj2[e2, e4] and αj3 = 0 for j ≥ 5. (3)

Case 1 Suppose that αj2 = 0 for all j ≥ 4. So [e3, ej ] = 0 for j ≥ 5,
[L,A] ⊆ M and we can put e2 = [e1, e3]. We have

[e2, ej ] = [[e1, e3], ej ] = −[[e3, ej ], e1]− [[ej , e1], e3] (4)

= αj4[e4, e3] for j ≥ 5. (5)

If αj4 = 0 for all j ≥ 5, then dimZ(N) ≥ n − 4, and if we choose B/Z(N)
to be a chief factor of L with B ⊂ N , B is an abelian ideal of L with
dimB ≥ n− 3.

So suppose that α54 6= 0, say. Put vj = α54ej − αj4e5 for j ≥ 6. Then
[e2, vj ] = 0 for j ≥ 6 and dimZ(N) ≥ n − 5. So, we can choose the terms
e6, . . . , en in the initial basis such that they belong to Z(N). Let us note
that N2 is spanned by [e2, e3], [e2, e4] and [e3, e4]. Now

[e1, [e2, e5]] = −[e2, [e5, e1]]− [e5, [e1, e2]]

= α54[e2, e4] + α55[e2, e5] + α22[e2, e5], and

[e1, [e4, e3]] = −[e4, [e3, e1]]− [e3, [e1, e4]]

= [e4, e2].

It follows from (5) that

2α54[e2, e4] = (α55 + α22)α54[e3, e4],

so dimN2 ≤ 2. Let B/Z(N) be a chief factor of L with B ⊂ N . Then B is
an abelian ideal of L of dimension at least n−4. Suppose that dimB = n−4
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and that this is a maximal abelian ideal of L. Then CL(B) = B. Put B =
Z(N)+Fb. Now [e3, b], [e4, b], [e5, b] ∈ N2. Since dimN2 ≤ 2 these elements
are linearly dependent. Hence we have β3[e3, b] + β4[e4, b] + β5[e5, b] = 0 for
some β3, β4, β5 ∈ F , not all zero. It follows that β3e3+β4e4+β5e5 ∈ CL(B) =
B, whence B = F (β3e3 + β4e4 + β5e5) + Z(N). Now e5 ∈ CL(B) = B, so
B = Z(N)+Fe5. But then e4 ∈ CL(B) \B, a contradiction. It follows that
there is an abelian ideal of dimension n− 3.

Case 2 Suppose that α52 6= 0, say, so [e1, e5] /∈ M . Put e2 = [e1, e5], so
that α52 = 1, α5j = 0 for j 6= 2; put also vj = ej − αj2e5 for j ≥ 6. Then
[e3, vj ] = 0 for j ≥ 6. We also have

[e1, vj ] = [e1, ej ]− αj2[e1, e5]

∈ A for j ≥ 6, using (3)

so [e2, vj ] = [[e1, e5], vj ] = −[[e5, vj ], e1]− [[vj, e1], e5] = 0 for j ≥ 6. So again
dimZ(N) ≥ n − 5, we can choose e6, . . . , en in our original basis to belong
to Z(N), and N2 is spanned by [e2, e3], [e2, e4], [e2, e5] and [e3, e4]. Now

[e1, [e2, e4]] = −[e2, [e4, e1]]− [e4, [e1, e2]]

= [e2, e3] + α22[e2, e4] + α23[e3, e4], (6)

and

[e1, [e3, e5]] = −[e3, [e5, e1]]− [e5, [e1, e3]]

= [e3, e2] + α32[e2, e5] + α33[e3, e5]. (7)

Since [e3, e5] = [e2, e4] this yields

2[e2, e3] = (α33 − α22)[e2, e4]− α23[e3, e4] + α32[e2, e5], (8)

so N2 is spanned by [e2, e4], [e2, e5] and [e3, e4].
We have N2 ⊆ A, since dimN/A = 2. Suppose first that N2 6⊆ Z(N).

Then choose B ⊆ N2 + Z(N) such that B/Z(N) is a chief factor of L.
Then B ⊂ A and A ⊆ CL(B) \ B. It follows that L has an abelian ideal of
dimension n− 3.

So consider now the case where N3 = 0. We have dimL/(L2 +Z(N)) ≤
3 since e2, e3 ∈ L2. Suppose first that dimL/(L2 + Z(N)) = 3, so that
L2 + Z(N) = Fe2 + Fe3 + Z(N) = D, say. This is an ideal of L, so
α24 = α25 = α34 = α35 = 0. Now

[e1, [e2, e3]] = −[e2, [e3, e1]]− [e3, [e1, e2]]

= α33[e2, e3] + α22[e2, e3]

= (α33 + α22)[e2, e3]. (9)
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Since L is nilpotent we must have α33 = −α22. Now

dim([L,D] + Z(N))/Z(N) ≤ 1,

so [e1, e3] + Z(N) = λ[e1, e2] + Z(N) for some λ ∈ F . It follows that
α32 = λα22, −α22 = α33 = λα23 and B = F (e3 − λe2) + Z(N) is an abelian
ideal of L. Suppose first that λ 6= 0. Then

[e3 − λe2, λe2 + e3 − λα23e4 − α32e5]
= −2λ[e2, e3] + (λ2α23 − α32)[e2, e4]− λα23[e3, e4] + λα32[e2, e5]
= λ(−2[e2, e3] + (α33 − α22)[e2, e4]− α23[e3, e4] + α32[e2, e5])
= 0,

using (8). It follows that CL(B) 6= B, so B is not a maximal abelian ideal
of L and the result holds.

If λ = 0 then α32 = α33 = α22 = 0 and (8) becomes 2[e2, e3] =
−α23[e3, e4]. But this implies that [2e2 − α23e4, e3] = 0, and CL(B) 6= B
again.

So suppose now that dimL/(L2 + Z(N)) = 2. Then there is an n1 ∈ N
such that L = Fe1 + Fn1 + Fn2 + Fn3 + Fn4 + Z(N) where n2 = [e1, n1],
n3 = [e1, n2], n4 = [e1, n3], [e1, n4] ∈ Z(N). Now

[e1, [n1, n2]] = −[n1, [n2, e1]]− [n2, [e1, n1]] = [n1, n3]

[e1, [n1, n3]] = −[n1, [n3, e1]]− [n3, [e1, n1]] = [n1, n4] + [n2, n3]

[e1, [n1, n4]] = −[n1, [n4, e1]]− [n4, [e1, n1]] = [n2, n4]

[e1, [n2, n4]] = −[n2, [n4, e1]]− [n4, [e1, n2]] = [n3, n4]

[e1, [n2, n3]] = −[n2, [n3, e1]]− [n3, [e1, n2]] = [n2, n4].

Since dimN2 ≤ 3 we have

0 = [e1, [e1, [e1, [n1, n2]]]] = 2[n2, n4].

Clearly B = Fn4 + Z(N) is an abelian ideal, and n2 ∈ CL(B) \ B, which
completes the proof. �

The restriction on the characteristic in the above result is necessary, as
the following example shows.

Example 4.1 Let L be the nine-dimensional Lie algebra, over any field F
of characteristic two, with basis e1, e2, e3, e4, e5, e6, e7, e8, e9 and non-zero
products

[e1, e2] = e6, [e1, e3] = e2, [e1, e4] = e3, [e1, e5] = e4, [e1, e8] = e7,
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[e1, e9] = e8, [e2, e3] = e7, [e2, e4] = e8, [e2, e5] = e9, [e3, e4] = e9.

This is a nilpotent Lie algebra whose abelian subalgebras of maximal dimen-
sion are

F (e3 + λe4) + Fe5 + Fe6 + Fe7 + Fe8 + Fe9 and

F (λe3 + e4) + Fe5 + Fe6 + Fe7 + Fe8 + Fe9 (λ ∈ F ),

so α(L) = 6. However, none of these are ideals of L; in fact the abelian
ideal of maximal dimension is

Fe2 + Fe6 + Fe7 + Fe8 + Fe9,

so β(L) = 5.

Note that the above example is valid over an algebraically closed field of
characteristic two, and so shows that [7, Proposition 2.6] does not hold over
such fields, even when L is nilpotent.

The results above prompt the following questions.

1. Does Theorem 4.1 hold for supersolvable Lie algebras L?

2. Let L be a supersolvable/nilpotent Lie algebra with α(L) = n − k
containing an abelian subalgebra A of maximal dimension, and let N
be a maximal subalgebra containing A that is an ideal of L.

(i) Is it true that dimZ(N) ≥ n− 2k + 1?

(ii) Is it true that dimN2 ≤ k − 1?

(iii) If they are true, do 1 and 2 imply that β(L) = n− k?

However, we have seen that restrictions on the underlying field are necessary
for any of these to be true.
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