Opened Access Symmetric functions in noncommuting variables

Citas

buscar en

Estadísticas
Icon
Exportar a
Autor: Rosas Celis, Mercedes Helena
Sagan, Bruce E.
Departamento: Universidad de Sevilla. Departamento de álgebra
Fecha: 2006
Publicado en: Transactions of the American Mathematical Society, 358 (1), 215-232.
Tipo de documento: Artículo
Resumen: Consider the algebra Qhhx1, x2, . . .ii of formal power series in countably many noncommuting variables over the rationals. The subalgebra Π(x1, x2, . . .) of symmetric functions in noncommuting variables consists of all elements invariant under permutation of the variables and of bounded degree. We develop a theory of such functions analogous to the ordinary theory of symmetric functions. In particular, we define analogs of the monomial, power sum, elementary, complete homogeneous, and Schur symmetric functions as will as investigating their properties.
Cita: Rosas Celis, M.H. y Sagan, B.E. (2006). Symmetric functions in noncommuting variables. Transactions of the American Mathematical Society, 358 (1), 215-232.
Tamaño: 224.4Kb
Formato: PDF

URI: http://hdl.handle.net/11441/41693

DOI: 10.1090/S0002-9947-04-03623-2

Ver versión del editor

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones