Data

NameRosas Celis, Mercedes Helena
DepartmentAlgebra
Knowledge areaÁlgebra
Professional categoryProfesora Titular de Universidad
E-mailRequest
           

  Statistics

  • Items

    27

  • Visits

    2027

  • Downloads

    2677

  Publications

 

Article
Icon

The 144 symmetries of the Littlewood-Richardson coefficients of SL3

Briand, Emmanuel; Rosas Celis, Mercedes Helena (Cornell University, 2020-01-01)
We compute with SageMath the group of all linear symmetries for the Littlewood-Richardson associated to the representations of ...
Presentation
Icon

The chamber complex for the Littlewood-Richardson coefficients of GL4

Briand, Emmanuel; Rosas Celis, Mercedes Helena; Trandafir, Stefan (Universidad de Sevilla, 2020-01-01)
Article
Icon

Normally ordered forms of powers of differential operators and their combinatorics

Briand, Emmanuel; Lopes, Samuel A.; Rosas Celis, Mercedes Helena (Cornell University, 2018-01-01)
We investigate the combinatorics of the general formulas for the powers of the operator h∂k, where h is a central element ...
PhD Thesis
Icon

Estabilidad en teoría combinatoria de la representación

Briand, Emmanuel; Rosas Celis, Mercedes Helena; Colmenarejo Hernando, Laura (2016-04-29)
Esta tesis presenta el estudio de dos familias de coeficientes: los coeficientes del pletismo y los coeficientes de Kronecker. ...
Presentation
Icon

Invariance properties for coefficients of symmetric functions

Briand, Emmanuel; Orellana, Rosa C.; Rosas Celis, Mercedes Helena (2016-01-01)
We show that several of the main structural constants for symmetric functions (Littlewood-Richardson coefficients, Kronecker ...
Article
Icon

On the growth of the Kronecker coefficients

Briand, Emmanuel; Rattan, Amarpreet; Rosas Celis, Mercedes Helena (Cornell University, 2016-01-01)
We study the rate of growth experienced by the Kronecker coefficients as we add cells to the rows and columns indexing partitions. We do this by moving to the setting of the reduced Kronecker coefficients.
Article
Icon

On the growth of the Kronecker coefficients: accompanying appendices

Briand, Emmanuel; Rattan, Amarpreet; Rosas Celis, Mercedes Helena (Cornell University, 2016-01-01)
This text is an appendix to our work ”On the growth of Kronecker coefficients” [1]. Here, we provide some complementary ...
Article
Icon

Combinatorics on a family of reduced Kronecker coefficients

Colmenarejo Hernando, Laura; Rosas Celis, Mercedes Helena (Elsevier, 2015-10-01)
The reduced Kronecker coefficients are particular instances of Kronecker coefficients that contain enough information to ...
Article
Icon

Commutation and normal ordering for operators on symmetric functions

Briand, Emmanuel; McNamara, Peter R. W.; Orellana, Rosa C.; Rosas Celis, Mercedes Helena (2015-01-01)
We study the commutation relations and normal ordering between families of operators on symmetric functions. These operators ...
Article
Icon

Rectangular symmetries for coefficients of symmetric functions

Briand, Emmanuel; Orellana, Rosa C.; Rosas Celis, Mercedes Helena (American Mathematical Society, 2015-01-01)
We show that some of the main structural constants for symmetric functions (Littlewood-Richardson coefficients, Kronecker ...
Article
Icon

The stability of the Kronecker products of Schur functions

Briand, Emmanuel; Orellana, Rosa C.; Rosas Celis, Mercedes Helena (Elsevier, 2011-04-01)
In the late 1930’s Murnaghan discovered the existence of a stabilization phenomenon for the Kronecker product of Schur ...
Article
Icon

Reduced Kronecker coefficients and counter-examples to Mulmuley's strong saturation conjecture SH

Briand, Emmanuel; Orellana, Rosa C.; Rosas Celis, Mercedes Helena (Springer, 2009-12-01)
We provide counter–examples to Mulmuley’s strong saturation conjecture (strong SH) for the Kronecker coefficients. This ...
Article
Icon

Milne's volume function and vector symmetric polynomials

Briand, Emmanuel; Rosas Celis, Mercedes Helena (Elsevier, 2009-05-01)
The number of real roots of a system of polynomial equations fitting inside a given box can be counted using a vector ...
Article
Icon

On the Sn-module structure of the noncommutative harmonics

Briand, Emmanuel; Rosas Celis, Mercedes Helena; Zabrocki, Mike (Elsevier, 2008-08-01)
Using the a noncommutative version of Chevalley’s theorem due to Bergeron, Reutenauer, Rosas, and Zabrocki we compute the ...
Article
Icon

Invariants and coinvariants of the symmetric group in noncommuting variables

Bergeron, Nantel; Reutenauer, Christophe; Rosas Celis, Mercedes Helena; Zabrocki, Mike (University of Toronto Press, 2008-01-01)
We introduce a natural Hopf algebra structure on the space of noncommutative symmetric functions. The bases for this algebra ...
Article
Icon

The defining ideals of conjugacy classes of nilpotent matrices and a conjecture of Weyman

Biagioli, Riccardo; Faridi, Sara; Rosas Celis, Mercedes Helena (Oxford University Press, 2008-01-01)
Tanisaki introduced generating sets for the defining ideals of the schematic intersections of the closure of conjugacy ...
Article
Icon

Quasipolynomial formulas for the Kronecker coefficients indexed by two two-row shapes (extended abstract)

Briand, Emmanuel; Orellana, Rosa; Rosas Celis, Mercedes Helena (Cornell University, 2008-01-01)
We show that the Kronecker coefficients indexed by two two–row shapes are given by quadratic quasipolynomial formulas whose ...
Article
Icon

Resolutions of De Concini-Procesi ideals of hooks

Biagioli, Riccardo; Faridi, Sara; Rosas Celis, Mercedes Helena (Taylor & Francis, 2007-01-01)
We find a minimal generating set for the defining ideal of the schematic intersection of the set of diagonal matrices with ...
Article
Icon

Inequalities between Littlewood–Richardson coefficients

Bergeron, François; Biagioli, Riccardo; Rosas Celis, Mercedes Helena (Elsevier, 2006-05-01)
We prove that a conjecture of Fomin, Fulton, Li, and Poon, associated to ordered pairs of partitions, holds for many ...
Article
Icon

Grothendieck bialgebras, Partition lattices, and symmetric functions in noncommutative variables

Bergeron, Nantel; Hohlweg, Christophe; Rosas Celis, Mercedes Helena; Zabrocki, Mike (American Mathematical Society, 2006-01-01)
We show that the Grothendieck bialgebra of the semi-tower of partition lattice algebras is isomorphic to the graded dual ...
Article
Icon

Symmetric functions in noncommuting variables

Rosas Celis, Mercedes Helena; Sagan, Bruce E. (American Mathematical Society, 2006-01-01)
Consider the algebra Qhhx1, x2, . . .ii of formal power series in countably many noncommuting variables over the rationals. ...
Article
Icon

Los números de (Euler)-Catalan

Rosas Celis, Mercedes Helena (Asociación Matemática Venezolana, 2003-01-01)
Article
Icon

Sumando la derivada de la serie geométrica

Boulton, Lyonell; Rosas Celis, Mercedes Helena (Asociación Matemática Venezolana, 2003-01-01)
Article
Icon

A combinatorial overview of the Hopf algebra of MacMahon symmetric functions

Rosas Celis, Mercedes Helena; Rota, Gian-Carlo; Stein, Joel (Springer, 2002-11-01)
A MacMahon symmetric function is a formal power series in a finite number of alphabets that is invariant under the diagonal ...
Article
Icon

Specializations of MacMahon symmetric functions and the polynomial algebra

Rosas Celis, Mercedes Helena (Elsevier, 2002-03-06)
A MacMahon symmetric function is a formal power series in a finite number of alphabets that is invariant under the diagonal ...
Article
Icon

MacMahon symmetric functions, the partition lattice, and young subgroups

Rosas Celis, Mercedes Helena (Elsevier, 2001-11-01)
A MacMahon symmetric function is a formal power series in a finite number of alphabets that is invariant under the diagonal ...
Article
Icon

The Kronecker product of Schur functions indexed by two-row shapes or hook shapes

Rosas Celis, Mercedes Helena (Springer, 2001-09-01)
The Kronecker product of two Schur functions sµ and sν, denoted by sµ ∗ sν, is the Frobenius characteristic of the tensor ...