NameRosas Celis, Mercedes Helena
DepartmentAlgebra
Knowledge areaÁlgebra
Professional categoryProfesora Titular de Universidad
E-mailRequest
           
  • No. publications

    39

  • No. visits

    3307

  • No. downloads

    4538


 

Article
Icon

All linear symmetries of the SU(3) tensor multiplicities

Briand, Emmanuel; Rosas Celis, Mercedes Helena; Trandafir, Stefan (IOP Science, 2024)
The SU(3) tensor multiplicities are piecewise polynomial of degree 1 in their labels. The pieces are the chambers of a ...
Master's Final Project
Icon

Generalizaciones de la fórmula de Graham-Pollak. Una prueba combinatoria.

Esquivias Quintero, Luis; Rosas Celis, Mercedes Helena (2023)
A famous formula of Graham and Pollak (1971) describes the determinant of the distance matrix of a tree T of order n: detM(T) ...
Article
Icon

Partial symmetries of iterated plethysms

Gutiérrez Cáceres, Álvaro; Rosas Celis, Mercedes Helena (Springer, 2023)
This work highlights the existence of partial symmetries in large families of iterated plethystic coefficients. The ...
Article
Icon

Necessary conditions for the positivity of Littlewood–Richardson and plethystic coefficients

Gutiérrez Cáceres, Álvaro; Rosas Celis, Mercedes Helena (Académie des Sciences, 2023)
We give necessary conditions for the positivity of Littlewood–Richardson coefficients and SXP coefficients. We deduce ...
Final Degree Project
Icon

Una prueba combinatoria de la fórmula Graham-Pollak

Lillo Pinto, Adrián; Rosas Celis, Mercedes Helena (2023)
In this senior thesis we present the first combinatorial proof for the renowned Graham and Pollak’s formula for the determinant of the distance matrix of a tree, based on the Lindström-Gessel-Viennot method.
Final Degree Project
Icon

Tableaux, representaciones y la dualidad de Schur-Weyl

Ocampo Amaya, Aarón; Rosas Celis, Mercedes Helena (2023)
The main objective of this work is to study the relation between representations of the symmetric group and those of the ...
Final Degree Project
Icon

Positivity conditions and hook+column sequences of plethystic coefficients

Gutiérrez Cáceres, Álvaro; Rosas Celis, Mercedes Helena (2021)
In this work we aim to study and better understand the coefficients of the plethystic operation on the symmetric functions. ...
Article
Icon

Vector partition functions and Kronecker coefficients

Mishna, Marni; Rosas Celis, Mercedes Helena; Sundaram, Sheila (IOP Science, 2021)
The Kronecker coefficients are the structure constants for the restriction of irreducible representations of the general ...
Article
Presentation
Icon

The chamber complex for the Littlewood-Richardson coefficients of GL4

Briand, Emmanuel; Rosas Celis, Mercedes Helena; Trandafir, Stefan (Universidad de Sevilla, 2020)
Article
Icon

Normally ordered forms of powers of differential operators and their combinatorics

Briand, Emmanuel; Lopes, Samuel A.; Rosas Celis, Mercedes Helena (Elsevier, 2020)
We investigate the combinatorics of the general formulas for the powers of the operator h∂k, where h is a central element ...
Article
Icon

The 144 symmetries of the Littlewood-Richardson coefficients of SL3

Briand, Emmanuel; Rosas Celis, Mercedes Helena (Cornell University, 2020)
We compute with SageMath the group of all linear symmetries for the Littlewood-Richardson associated to the representations of ...
Article
Icon

A comment of the combinatorics of the vertex operator Γ(t|X)

Rosas Celis, Mercedes Helena (Project euclid, 2019)
The Jacobi--Trudi identity associates a symmetric function to any integer sequence. Let Γ(t|X) be the vertex operator ...
Article
Icon

Commutation and normal ordering for operators on symmetric functions

Briand, Emmanuel; McNamara, Peter R. W.; Orellana, Rosa C.; Rosas Celis, Mercedes Helena (2019)
We study the commutation relations and normal ordering between families of operators on symmetric functions. These operators ...
Article
Icon

On the growth of the Kronecker coefficients

Briand, Emmanuel; Rattan, Amarpreet; Rosas Celis, Mercedes Helena (2017)
We study the rate of growth experienced by the Kronecker coefficients as we add cells to the rows and columns indexing partitions. We do this by moving to the setting of the reduced Kronecker coefficients.
PhD Thesis
Icon

Estabilidad en teoría combinatoria de la representación

Colmenarejo Hernando, Laura; Briand, Emmanuel; Rosas Celis, Mercedes Helena (2016)
Esta tesis presenta el estudio de dos familias de coeficientes: los coeficientes del pletismo y los coeficientes de Kronecker. ...
Article
Icon

On the growth of the Kronecker coefficients: accompanying appendices

Briand, Emmanuel; Rattan, Amarpreet; Rosas Celis, Mercedes Helena (Cornell University, 2016)
This text is an appendix to our work ”On the growth of Kronecker coefficients” [1]. Here, we provide some complementary ...
Presentation
Icon

Invariance properties for coefficients of symmetric functions

Briand, Emmanuel; Orellana, Rosa C.; Rosas Celis, Mercedes Helena (2016)
We show that several of the main structural constants for symmetric functions (Littlewood-Richardson coefficients, Kronecker ...
Article
Icon

Combinatorics on a family of reduced Kronecker coefficients

Colmenarejo Hernando, Laura; Rosas Celis, Mercedes Helena (Elsevier, 2015)
The reduced Kronecker coefficients are particular instances of Kronecker coefficients that contain enough information to ...
Article
Icon

Combinatorics on a family of reduced Kronecker coefficients

Colmenarejo Hernando, Laura; Rosas Celis, Mercedes Helena (Académie des Sciences, 2015)
The reduced Kronecker coefficients are particular instances of Kronecker coefficients, that nevertheless contain enough ...
Article
Icon

Rectangular symmetries for coe cients of symmetric functions

Briand, Emmanuel; Orellana, Rosa; Rosas Celis, Mercedes Helena (The Electronic Journal of Combinatorics, 2015)
We show that some of the main structural constants for symmetric functions (Littlewood-Richardson coe cients, Kronecker ...
Article
Icon

Rectangular symmetries for coefficients of symmetric functions

Briand, Emmanuel; Orellana, Rosa C.; Rosas Celis, Mercedes Helena (American Mathematical Society, 2015)
We show that some of the main structural constants for symmetric functions (Littlewood-Richardson coefficients, Kronecker ...
Article
Icon

The stability of the Kronecker products of Schur functions

Briand, Emmanuel; Orellana, Rosa C.; Rosas Celis, Mercedes Helena (Elsevier, 2011)
In the late 1930’s Murnaghan discovered the existence of a stabilization phenomenon for the Kronecker product of Schur ...
Article
Icon

Reduced Kronecker coefficients and counter-examples to Mulmuley's strong saturation conjecture SH

Briand, Emmanuel; Orellana, Rosa C.; Rosas Celis, Mercedes Helena (Springer, 2009)
We provide counter–examples to Mulmuley’s strong saturation conjecture (strong SH) for the Kronecker coefficients. This ...
Article
Icon

Milne's volume function and vector symmetric polynomials

Briand, Emmanuel; Rosas Celis, Mercedes Helena (Elsevier, 2009)
The number of real roots of a system of polynomial equations fitting inside a given box can be counted using a vector ...
Article
Icon

On the Sn-module structure of the noncommutative harmonics

Briand, Emmanuel; Rosas Celis, Mercedes Helena; Zabrocki, Mike (Elsevier, 2008)
Using the a noncommutative version of Chevalley’s theorem due to Bergeron, Reutenauer, Rosas, and Zabrocki we compute the ...
Article
Icon

The defining ideals of conjugacy classes of nilpotent matrices and a conjecture of Weyman

Biagioli, Riccardo; Faridi, Sara; Rosas Celis, Mercedes Helena (Oxford University Press, 2008)
Tanisaki introduced generating sets for the defining ideals of the schematic intersections of the closure of conjugacy ...
Article
Icon

Invariants and coinvariants of the symmetric group in noncommuting variables

Bergeron, Nantel; Reutenauer, Christophe; Rosas Celis, Mercedes Helena; Zabrocki, Mike (University of Toronto Press, 2008)
We introduce a natural Hopf algebra structure on the space of noncommutative symmetric functions. The bases for this algebra ...
Article
Icon

Quasipolynomial formulas for the Kronecker coefficients indexed by two two-row shapes (extended abstract)

Briand, Emmanuel; Orellana, Rosa; Rosas Celis, Mercedes Helena (Cornell University, 2008)
We show that the Kronecker coefficients indexed by two two–row shapes are given by quadratic quasipolynomial formulas whose ...
Article
Icon

Resolutions of De Concini-Procesi ideals of hooks

Biagioli, Riccardo; Faridi, Sara; Rosas Celis, Mercedes Helena (Taylor & Francis, 2007)
We find a minimal generating set for the defining ideal of the schematic intersection of the set of diagonal matrices with ...
Article
Icon

Inequalities between Littlewood–Richardson coefficients

Bergeron, François; Biagioli, Riccardo; Rosas Celis, Mercedes Helena (Elsevier, 2006)
We prove that a conjecture of Fomin, Fulton, Li, and Poon, associated to ordered pairs of partitions, holds for many ...
Article
Icon

Grothendieck bialgebras, Partition lattices, and symmetric functions in noncommutative variables

Bergeron, Nantel; Hohlweg, Christophe; Rosas Celis, Mercedes Helena; Zabrocki, Mike (American Mathematical Society, 2006)
We show that the Grothendieck bialgebra of the semi-tower of partition lattice algebras is isomorphic to the graded dual ...
Article
Icon

Symmetric functions in noncommuting variables

Rosas Celis, Mercedes Helena; Sagan, Bruce E. (American Mathematical Society, 2006)
Consider the algebra Qhhx1, x2, . . .ii of formal power series in countably many noncommuting variables over the rationals. ...
Article
Icon

Los números de (Euler)-Catalan

Rosas Celis, Mercedes Helena (Asociación Matemática Venezolana, 2003)
Article
Icon

Sumando la derivada de la serie geométrica

Boulton, Lyonell; Rosas Celis, Mercedes Helena (Asociación Matemática Venezolana, 2003)
Article
Icon

A combinatorial overview of the Hopf algebra of MacMahon symmetric functions

Rosas Celis, Mercedes Helena; Rota, Gian-Carlo; Stein, Joel (Springer, 2002)
A MacMahon symmetric function is a formal power series in a finite number of alphabets that is invariant under the diagonal ...
Article
Icon

Specializations of MacMahon symmetric functions and the polynomial algebra

Rosas Celis, Mercedes Helena (Elsevier, 2002)
A MacMahon symmetric function is a formal power series in a finite number of alphabets that is invariant under the diagonal ...
Article
Icon

MacMahon symmetric functions, the partition lattice, and young subgroups

Rosas Celis, Mercedes Helena (Elsevier, 2001)
A MacMahon symmetric function is a formal power series in a finite number of alphabets that is invariant under the diagonal ...
Article
Icon

The Kronecker product of Schur functions indexed by two-row shapes or hook shapes

Rosas Celis, Mercedes Helena (Springer, 2001)
The Kronecker product of two Schur functions sµ and sν, denoted by sµ ∗ sν, is the Frobenius characteristic of the tensor ...