Repositorio de producción científica de la Universidad de Sevilla

Positive solutions for the degenerate logistic indefinite superlinear problem the slow diffusion case

 

Advanced Search
 
Opened Access Positive solutions for the degenerate logistic indefinite superlinear problem the slow diffusion case
Cites
Show item statistics
Icon
Export to
Author: Delgado Delgado, Manuel
Suárez Fernández, Antonio
Department: Universidad de Sevilla. Departamento de Ecuaciones Diferenciales y Análisis Numérico
Date: 2003
Published in: Houston Journal of Mathematics, 29(3), 801-820
Document type: Article
Abstract: In this work we study the existence, stability and multiplicity of the positive steady-states solutions of the degenerate logistic indefinite superlinear problem. By an adequate change of variable, the problem is transformed into an elliptic equation with concave and indefinite convex nonlinearities. We use singular spectral theory, the Leray-Schauder degree, bifurcation and monotony methods to obtain the existence results, and fixed point index in cones and a Picone identity to show the multiplicity results and the existence of a unique positive solution linearly asymptotically stable.
Cite: Delgado Delgado, M. y Suárez Fernández, A. (2003). Positive solutions for the degenerate logistic indefinite superlinear problem the slow diffusion case. Houston Journal of Mathematics, 29 (3), 801-820.
Size: 429.8Kb
Format: PDF

URI: http://hdl.handle.net/11441/41275

This work is under a Creative Commons License: 
Attribution-NonCommercial-NoDerivatives 4.0 Internacional

This item appears in the following Collection(s)