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DIFFUSION CASE
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Abstract. In this work we study the existence, stability and multiplicity

of the positive steady-states solutions of the degenerate logistic indefinite

superlinear problem. By an adequate change of variable, the problem is

transformed into an elliptic equation with concave and indefinite convex

nonlinearities. We use singular spectral theory, the Leray-Schauder degree,

bifurcation and monotony methods to obtain the existence results, and fixed

point index in cones and a Picone identity to show the multiplicity results

and the existence of a unique positive solution linearly asymptotically stable.

1. Introduction

In this work we analyze the existence, stability and multiplicity of nonnegative
and non-trivial solutions of the degenerate logistic indefinite superlinear model

(1)
{

Lwm = λw + a(x)w2 in Ω,
w = 0 on ∂Ω,

where Ω is a bounded and regular domain of IRN , N ≥ 1; m > 1; λ ∈ IR that
it will be considered parameter, a ∈ Cα(Ω), α ∈ (0, 1), changes sign and L is a
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second order uniformly elliptic operator of the form

(2) Lu := −
N

∑

i,j=1

Di(aijDju) +
N

∑

i=1

bi(x)Diu,

with aij = aji ∈ C1(Ω) and bi ∈ C1(Ω).
We define a+(x) := max{a, 0}, a− := min{a, 0}, and so a = a+ + a− and

A+ := {x ∈ Ω : a+(x) > 0}, A− := {x ∈ Ω : a−(x) < 0}, A0 := Ω\ (A+∪A−)

and assume that A± are open and sufficiently smooth, and that a± are bounded
away from zero on compact subsets of A±.

Equation (1) can be regarded as a model of a steady-state single species inhab-
iting in Ω, so w(x) stands for the population density. The parameter λ represents
the growth rate of the species and a(x) describes the limiting effects of crowding
in the species in A− and the intraspecific cooperation in A+. Observe that in A0

the population is free from crowding and symbiosis effects. Finally, L measures
the diffusivity and the external transport effects of the species. The term m > 1
was introduced in [18] by describing the dynamics of biological population whose
mobility depends upon their density. In this context, m > 1 means that the
diffusion, the rate of movement of the species from high density regions to low
density ones, is slower than in the linear case (m = 1), which seems give more
realistic models, see [18].

The change of variable u := wm transforms (1) into

(3)
{

Lu = λuq + a(x)up in Ω,
u = 0 on ∂Ω,

with q = 1/m and p = 2/m. Along this work we suppose

(H) 0 < q < 1 < p

so, we are assuming that 1 < m < 2, we call this case the slow diffusion. When
q = 1, that is m = 1, (3) has been studied extensively in the last years, see for
example [2], [3], [4], [6], [11], [12], [13], [17], [21], [22] and [24]. Roughly speaking,
in these works it was proved that from the trivial solution u = 0 at λ = σ1[L]
bifurcates an unbounded continuum of positive solutions supercritically (resp.
subcritically) if

D :=
∫

Ω

aϕp
1ϕ
∗
1 < 0 (resp. > 0,)

where σ1[L] = σ1[L∗], ϕ1 and ϕ∗1 stand for the principal eigenvalue and the
principal eigenfunction of L and its adjoint L∗ in Ω under homogeneous Dirichlet
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boundary conditions. Moreover, in [6] and [11], assuming some restrictions on p

and on the decay of a+ near ∂A+, the authors obtained a priori bounds for λ in
compact interval of IR. So, if for example D < 0, in [6] was shown the existence
of positive solution for λ ∈ (∞, λ∗] for some λ∗ > σ1[L] and the existence of,
at least, two positive solutions for λ ∈ (σ1[L], λ∗). Recently, the existence of
a unique solution linearly asymptotically stable in (σ1[L], λ∗) and multiplicity
results in such interval have been showed in [17].

The results when q < 1 are completely different. Indeed, in the specific case
L = −∆ and a(x) = 1, Ambrosetti, Brezis and Cerami, in the pioneer work [7],
proved the existence of, at least, two positive solutions of (3) in the interval (0, λ∗)
if p < (N + 2)/(N − 2) and where λ∗ is the supremum of the set

Λ := {λ > 0 : (3) has a positive solution.}

To obtain this result, the authors used the sub-supersolution and variational
methods. More recently, in [10] the authors have proved that from the trivial
solutions u = 0 emanates an unbounded continuum of positive solutions at λ =
0. Unlike the case q = 1, this continuum emanates supercritically independent
of the sign of D, in fact, the bifurcation direction only depends on value of p.
This has been proved in [10] even when the operator L is quasilinear. Then, if
a(x) ≥ a0 > 0 and p < (N + 2)/(N − 2) they proved the existence of nonnegative
solution in (−∞, λ∗) and of, at least, two positive solutions in (0, λ∗). See also
similar results obtained in [8] when the operator is the p-Laplacian and [1] when
the boundary conditions are Neumann. In all these works, a does not change sign.
When a changes sign, recently in [23] the authors have proved the existence of a
weak nonnegative solution if λ ≤ 0 making use of a direct variational approach,
see [26] for the case of Neumann boundary conditions.

In this work, we improve and generalize the above results. We consider a non-
selfadjoint operator L, so it is well-known that the variational methods do not
work, and a function a changing sign. As in [10], we prove that an unbounded
continuum of nonnegative solutions emanates from the trivial solution u = 0 at
λ = 0 supercritically. Moreover, we prove the existence of a minimal solution
for λ ∈ (0, λ∗) and the existence of λ ≥ λ∗ such that for λ > λ, (3) does not
admit positive solution. Using the results of Section 4 in [6], and assuming some
restrictions on p and a+ (see Theorem 5.1), we obtain a priori bounds for the pos-
itive solutions of (3) for compact intervals of λ. Finally, under these restrictions,
we obtain a unique positive solution linearly asymptotically stable in (0, λ∗), the
existence of, at least, two positive solution in (0, λ∗) and other multiplicity result
in this interval (see Theorem 6.9). These results were strongly motivated by [17].
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In order to obtain this result, we have used the Picone identity, so we assume
that L is selfadjoint. Finally, we would like to point out that the stability results
are obtained by linearizing at a positive solution. Observe that, since q < 1, the
linearized problem is a problem with a potential blowing up near ∂Ω. So, we need
some spectral theory with singular potential. For that, we have included some
results obtained in [16] and [19].

An outline of this paper is as follows: In Section 2 we have collected some
spectral theory with singular potential. In Section 3 we study problem (3) in the
case a+ = 0. These results come from [15] and will be used in the next sections.
In Section 4 we apply the Leray-Schauder degree and bifurcation theory to show
the existence of an unbounded continuum of nonnegative solution emanating su-
percritically at λ = 0 from the trivial solution u = 0. In Section 5 we obtain a
priori bounds of the positive solutions of (3) for compact intervals of λ. Finally,
in Section 6 we obtain multiplicity and stability results.

2. Singular eigenvalue problem

In this section we collect some results about the existence of principal eigen-
value for a singular linear eigenvalue problem of the form

(4)
{

(L+ M(x))u = σu in Ω,
u = 0 on ∂Ω,

where M ∈ C1(Ω) but it can blow-up near ∂Ω at a controlled way. The next
result was proved in [19].

Theorem 2.1. Suppose M ∈ C1(Ω) and there exist two constants K > 0 and
ε > 0 for which

(5) |M(x)| ≤ K

[dist(x, ∂Ω)]2−ε
x ∈ Ω.

Then, there exists a unique value of σ, denoted by σΩ
1 [L+M ] and called principal

eigenvalue of (4), for which (4) possesses a weak positive solution (in H1
0 (Ω) ∩

L∞(Ω)), unique up to multiplicative constants, denoted by ϕΩ
1 and called principal

eigenfunction of (4).
Moreover, by elliptic regularity, ϕΩ

1 ∈ C1
0 (Ω), ϕΩ

1 (x) > 0 for each x ∈ Ω and
∂ϕΩ

1
∂n (x) < 0 for each x ∈ ∂Ω, where n stands for the outward unit normal to Ω at

x.
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Furthermore, σΩ
1 [L + M ] is increasing with respect to M and decreasing with

respect to Ω, and if σΩ
1 [L+ M ] > 0 then u = 0 is the unique weak solution of

{

(L+ M(x))u = 0 in Ω,
u = 0 on ∂Ω.

The following result was shown in [20] when M ∈ L∞(Ω), and in [16] when M

satisfies (5).

Definition 2.2. A function ϕ ∈ C2 (Ω)∩C1(Ω) is said a supersolution of L+M

if (L + M)ϕ ≥ 0 in Ω and ϕ ≥ 0 on ∂Ω. If in addition, (L + M)ϕ > 0 in Ω or
ϕ > 0 on ∂Ω, then it is said that ϕ is a strict supersolution.

Theorem 2.3. Assume that M satisfies (5). Then:

(1) σΩ
1 [L+M ] > 0 if, and only if, L+M admits a positive strict supersolution.

(2) If there exists ϕ ∈ C2 (Ω) ∩ C1(Ω) with ϕ > 0 in Ω such that ϕ = 0 on
∂Ω and (L+ M)ϕ < 0 in Ω, then

σΩ
1 [L+ M ] < 0.

We do not write the superindex Ω, when no confusion arises.

3. The sublinear case: a+ ≡ 0.

In this section we study the sublinear case, that is, when a+ ≡ 0. The following
result characterizes the existence, uniqueness and linear stability in this case.

Theorem 3.1. Assume a+ ≡ 0. Then, there exists a unique positive solution of
(3) if, and only if, λ > 0. Moreover, if we denote it by θ[λ,a−], then

(6) lim
λ↓0

‖θ[λ,a−]‖∞ = 0.

Furthermore, if λ > 0 then θ[λ,a−] is linearly asymptotically stable, that is,

(7) σ1[L+ Mλ(x)] > 0,

where Mλ := −λqθq−1
[λ,a−] − pa−θp−1

[λ,a−]

Proof. Except (7), the result follows by a similar argument to Theorem 4.2 in
[15] where the result was proved when L = −∆. We are going to show (7). Firstly,
observe that for λ > 0, (3) satisfies the strong maximum principle, so there exists
C > 0 such that

Cdist(x, ∂Ω) ≤ θ[λ,a−](x), for all x ∈ Ω,
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and so, Mλ satisfies (5). On the other hand, by (H) and Theorem 2.1, it follows

0 = σ1[L − λθq−1
[λ,a−] − a−θp−1

[λ,a−]] < σ1[L+ Mλ].

This completes the proof. £

The following result will be used in the next sections.

Lemma 3.2. Assume a+ ≡ 0. Then,

(8) lim
λ↓0

σ1[L+ Mλ] = σ1[L − qzq−1] > 0,

where z is the unique positive solution of

(9)
{

Lz = zq in Ω,
z = 0 on ∂Ω.

Proof. The existence of a unique positive solution for (9) follows by the sub-
supersolution method, see [15] for details. Moreover, again by the strong maxi-
mum principle, zq−1 satisfies (5) and so it is well-defined σ1[L − zq−1]. By (H)
and Theorem 2.1, we have

(10) 0 = σ1[L − zq−1] < σ1[L − qzq−1].

In order to prove (8), by (6) it is sufficient to show that

(11) ξλ := λ1/(q−1)θ[λ,a−] → z as λ ↓ 0.

It is not hard to prove that ξλ satisfies

Lξλ = ξq
λ + a−λ(p−1)/(1−q)ξp

λ in Ω, ξλ = 0 on ∂Ω.

By (H), it follows (11), and thanks to (10) we obtain the result. £

4. Bifurcation from the trivial solution

In this section we will show that a bifurcation from the trivial solution of (3)
occurs at λ = 0. For that, we consider the Banach space X := C0(Ω), denote
Bρ := {u ∈ X : ‖u‖∞ < ρ} and take K > 0 sufficiently large. We extend the
function f(λ, x, s) := λsq + a(x)sp + Ks by taking f(λ, x, s) := 0 if s < 0. Note
that f can take negative values. Finally, we define the map

Kλ : X 7→ X; Kλ(u) := u− (L+ K)−1(f(λ, x, u))

where (L+K)−1 is the inverse of the operator L+K under homogeneous Dirichlet
boundary conditions, which is well-defined since σ1[L + K] > 0. Indeed, since
positive constants are supersolutions of L, then

σ1[L] > 0,
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whence it follows that σ1[L + K] > 0. Now, we can prove that u is a nonneg-
ative solution of (3) if, and only if, u is a zero of the map Kλ. It is clear that
every nonnegative solution is a zero of Kλ; conversely, if u is a zero of Kλ then,
multiplying (3) by u−, we obtain

(12)
∫

Ω

N
∑

i,j=1

aijDi(u−)Dj(u−) +
∫

Ω

(K − 1
2

N
∑

i=1

Dibi)(u−)2 ≤ 0,

and so, since L is a second uniformly elliptic operator, it follows that u− ≡ 0.
Observe that a nonnegative solution u ∈ X of (3), it belongs to C1+ν(Ω)∩C1

0 (Ω)
for ν := min{α, q}.
The main result of this section is:

Theorem 4.1. The value λ = 0 is the only bifurcation point from the trivial
solutions for (3). Moreover, there exists a continuum C0 of nonnegative solutions
of (3) unbounded in IR ×X emanating from (0, 0). In addition, C0 bifurcates to
the right of λ = 0, i.e., it is supercritical.

In order to prove this result we use the Leray-Schauder degree of Kλ on Bρ

with respect to zero, denoted by deg(Kλ, Bρ), and the index of the isolated zero
u of Kλ, denoted by i(Kλ, u). In the following results, we use homotopies which
were used in [10], see also [9].

Lemma 4.2. If λ < 0, then i(Kλ, 0) = 1.

Proof. Fix λ < 0. Define the map

H1 : [0, 1]×X 7→ X; H1(t, u) := (L+ K)−1(tf(λ, x, u)).

We claim that there exists δ > 0 such that

u 6= H1(t, u)

for u ∈ Bδ, u 6= 0 and t ∈ [0, 1]. Indeed, suppose that there exist sequences
un ∈ X\{0} with ‖un‖∞ → 0 and tn ∈ [0, 1] such that

un = H1(tn, un).

We know that un ≥ 0. Since ‖un‖∞ → 0 and λ < 0, there exists n0 ∈ IN such
that for n ≥ n0, it holds

Lun ≤ 0 in Ω,

which is impossible.
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Taking now ε ∈ (0, δ], the homotopy defined by H1 is admissible and so,

i(Kλ, 0) = deg(Kλ, Bε) = deg(I −H1(1, ·), Bε) = deg(I −H1(0, ·), Bε) =
= deg(I, Bε) = 1.

£

Lemma 4.3. If λ > 0, then i(Kλ, 0) = 0.

Proof. Fix λ > 0 and φ ∈ X, φ > 0. We define the map

H2 : [0, 1]×X 7→ X; H2(t, u) := (L+ K)−1(f(λ, x, u) + tφ).

We will show that there exists δ > 0 such that u 6= H2(t, u) for all u ∈ Bδ, u 6= 0
and t ∈ [0, 1]. Indeed, suppose the contrary: there exist sequences un ∈ X \ {0}
with ‖un‖∞ → 0 and tn ∈ [0, 1] such that

un = H2(tn, un).

Since tnφ ≥ 0, multiplying by u−, and by a similar argument to the used in (12),
we obtain that un ≥ 0. Moreover since λ > 0, by the strong maximum principle
un > 0. We fix M ≥ σ1[L]. Since ‖un‖∞ → 0 and λ > 0, there exists n0 ∈ IN
such that for n ≥ n0 we get

Lun = λuq
n + a(x)up

n + tnφ > Mun + tnφ,

and so,
(L −M)un > 0.

So, un is a positive strict supersolution of L −M , and by Theorem 2.3, we get
σ1[L −M ] > 0, and so M < σ1[L]. This is impossible.

This proves that the homotopy defined by H2 is admissible. Then, if we take
ε ∈ (0, δ] we have

i(Kλ, 0) = deg(Kλ, Bε) = deg(I −H2(0, ·), Bε) = deg(I −H2(1, ·), Bε) = 0.

This last equality is true because the problem Lu = λuq + a(x)up + φ has no
solution in Bε because we have shown that u 6= H2(1, u) for all u ∈ Bδ, u 6= 0. £

Proof of Theorem 4.1: The fact that λ = 0 is a bifurcation point follows
by Lemma 4.2 and Lemma 4.3. Moreover, from Lemma 4.2, (3) does not have
bifurcation points in (−∞, 0). Assume that there exists a sequence of solutions
(λn, un) such that λn → λ0 > 0 and ‖un‖∞ → 0. We take M ≥ σ1[L], so there
exists n0 ∈ IN such that

λnuq
n + a(x)up

n > Mun for all n ≥ n0.

As in the proof of Lemma 4.3, we obtain that σ1[L −M ] > 0, a contradiction.
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Now, even though our map Kλ does not satisfy exactly the hypotheses of The-
orem 1.3 in [25], the proof can be modified to obtain the result, see Theorem 3.1
in [1] and Theorem 4.4 in [10], and we can conclude the existence of a continuum
of solutions of (3) such that meets (0, 0) either infinity or (λ′, 0) with λ′ 6= 0. We
can discard the last possibility by the above reasoning, and so the existence of an
unbounded continuum of solutions of (3) follows.

We are going to prove that the bifurcation is supercritical, for which plays an
essential role that p > 1. Indeed, assume that there exists a sequence (λn, un)
of solutions of (3) such that λn ≤ 0 and un ≥ 0, un 6= 0 with λn → 0 and
‖un‖∞ → 0. Since σ1[L] > 0, there exists a sufficiently small ε > 0 such that

(13) σ1[L − ε] > 0.

For such ε > 0, there exists n0(ε) ∈ IN such that for n ≥ n0, we get

Lun = λnuq
n + a(x)up

n ≤ a(x)up
n < εun

whence by (13) we obtain a contradiction. £
The next result shows that for λ large, (3) has no solution.

Proposition 4.4. There exists λ > 0 such that for λ > λ, (3) has no solution.

Proof. We fix δ > 0 sufficiently small and define the set

Dδ := {x ∈ A+ : dist(x, ∂A+) > δ} 6= ∅.

Then, there exists a positive constant c+(δ) > 0 such that

a+(x) ≥ c+(δ) > 0 in D
δ
.

Observe that Dδ has only finitely many connected components, say Dδ
i , i =

1, . . . , r.
Since λ > 0, the strong maximun principle assures that any nonnegative and
nontrivial solution of (3) is in fact strictly positive. So, by Theorem 2.1 is well-
defined σ1[L − λuq−1 − a(x)up−1], and we have

(14) 0 = σ1[L − λuq−1 − a(x)up−1] < σ
Dδ

1
1 [L − λuq−1 − a(x)up−1].

Let ϕ
Dδ

1
1 the principal eigenfunction associated with L in Dδ

1. We claim that

there exists λ > 0 such that for λ > λ, ϕ
Dδ

1
1 is a strict subsolution of L1 :=

L − λuq−1 − a(x)up−1 in Dδ
1, and so by Theorem 2.3

σ
Dδ

1
1 [L1] < 0
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which is a contradiction with (14). It remains to show the claim. Observe that
in Dδ

1 we have that

L1ϕ
Dδ

1
1 = (σDδ

1
1 [L]−λuq−1−a(x)up−1)ϕDδ

1
1 < (σDδ

1
1 [L]−λuq−1−c+(δ)up−1)ϕDδ

1
1 < 0

provided λ > λ with

λ =
(σDδ

1
1 [L])(p−q)/(p−1)

(c+(δ))(1−q)/(p−1)

(

1− q

p− q

)(1−q)/(p−1) (

p− 1
p− q

)

.

£

5. A priori bounds

In this section we obtain a priori bounds of the nonnegative solutions of (3)
under some restrictions on p and the behaviour of a+ near ∂A+. For that, we
assume that Ω\A+ is smooth and we follow the results of Section 4 of [6].

Theorem 5.1. Suppose that there exist a function h : A+ 7→ IR+, continuous and
bounded away from zero in a neighborhood of ∂A+, and a constant γ ≥ 0 such
that

a+(x) = h(x)(dist(x, ∂A+))γ , in A+.

Also assume that

p <
N + 1 + γ

N − 1
and

p <
N + 2
N − 2

if N ≥ 3.

Then, for every compact interval Λ ⊂ IR there exists a positive constant C such
that

‖u‖∞ ≤ C,

for any nonnegative solution (λ, u) of (3) with λ ∈ Λ.

Proof. We divide the proof in two steps.
Step 1: A priori bounds on A+. For this step, we can repeat exactly the argu-
ments of Lemma 4.2 and Theorem 4.3 of [6], where an adequate rescaling Gidas-
Spruck argument and a new Liouville type theorem are used, see also Sections 2
and 3 in [11].
Step 2: A priori bounds on Ω. Define

R := sup
λ∈Λ

sup
x∈A+

u(x) < ∞.
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We consider the problem

(15)
{

Lz = λzq in Ω\A+,
z = R on ∂(Ω\A+).

We claim that there exists a unique nonnegative solution zλ of (15). Then, it
is clear that a solution u of (3) is a subsolution of (15) in Ω\A+, then by the
uniqueness of the nonnegative solution of (15) we get

‖u‖L∞(Ω\A+) ≤ ‖zλ‖L∞(Ω\A+),

whence the result follows.
It remains to prove the claim. For the existence we use the sub-supersolution
method. Indeed, z := 0 is a subsolution of (15). Now, let w be the unique
positive solution of

{

Lw = 1 in Ω\A+,
w = R on ∂(Ω\A+).

Then, z := Kw is a supersolution of (15) if K is sufficiently large.
For the uniqueness, firstly assume that λ ≥ 0 and suppose that (15) possesses

a further positive solution v 6= u. By the mean value theorem, we get

L(u− v) = λ(uq − vq) = λq

∫ 1

0

[tu + (1− t)v]q−1 dt (u− v) in Ω\A+.

Hence,
{

(L − λqM(x))(u− v) = 0 in Ω\A+,

u− v = 0 on ∂(Ω\A+),
where

M(x) :=
∫ 1

0

[tu + (1− t)v]q−1 dt

Since λ ≥ 0, by the strong maximum principle, u and v are strictly positive, and
so M verifies (5). Moreover, it satisfies the following estimate

qM < uq−1 in Ω\A+.

Thus, according to Theorem 2.1

σ
Ω\A+
1 [L − λqM ] > σ

Ω\A+
1 [L − λuq−1] > 0,

this last inequality because the positive solution u of (15) is a positive strict super-
solution of L−λuq−1 in Ω\A+ under homogeneous Dirichlet boundary conditions.
Therefore, u− v = 0 must be the unique solution of (15). This contradicts u 6= v

and shows the uniqueness in this case.
When λ < 0, the maximum principle implies that z < R for any nonnegative
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solution z of (15). Hence, since z := R is supersolution of (15), it follows the
existence of a maximal nonnegative solution z∗ of (15) such that for any other
nonnegative solution z of (15) it holds

0 ≤ z ≤ z∗ < R.

Suppose that (15) possesses a further nonnegative solution z < z∗ and let x0 ∈
Ω\A+ be such that 0 < z∗(x0)− z(x0) := maxx∈Ω\A+

{z∗(x)− z(x)}. Then,

0 ≤ −
N

∑

i,j=1

aij(x0)Dij(z∗ − z)(x0) = λ((z∗(x0))q − zq(x0)) < 0,

because λ < 0, which gives us a contradiction. £

Remark 5.2. Other conditions can be imposed on p and a+ to obtain a priori
bounds for the positive solutions of (3) for compact interval of IR, see Introduction
and Sections 4, 5 and 6 in [6]. On the other hand, if Ω0 has Lebesgue measure
zero and ∇a(x) 6= 0 in Ω0, we can obtain a priori estimates for the solutions for
all p < (N + 2)/(N − 2), N ≥ 3, following [14].

6. Structure of the interval of existence. Multiplicity and

stability result.

In order to show the stability and multiplicity results, we introduce some no-
tations. Let e denote the unique positive solution of

Le = 1 in Ω, e = 0 on ∂Ω.

We denote

Ce(Ω) := {u ∈ X : for which there exists κ > 0 such that −κe ≤ u ≤ κe},

endowed with the norm

‖u‖e := inf{κ > 0 : −κe ≤ u ≤ κe}

and ordered by its cone of positive functions P , which is normal and has nonempty
interior, see [5]. Moreover, when λ ≥ 0, we can define

K : IR+ × P 7→ P ; K(λ, u) := (L+ K)−1(λuq + a(x)up + Ku)

for K sufficiently large. Then, K is compact on bounded sets, K ∈ C1 and strongly
positive. Moreover, given (λ, u) a positive solution of (3) with λ ≥ 0, the right
derivative K′(λ, u) := (∂1K(λ, u), ∂2K(λ, u)) is strongly positive. Observe that
the solution of (3) are the fixed point of K. On the other hand, it is well-defined
the fixed point index respect to P of an isolated fixed point u0 of K, denoted by
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iP (K, u0), see Section 11 of [5] for the definition and the main properties of this
concept. Furthermore, for any ρ > 0 we denote Pρ := Be

ρ∩P , where Be
ρ is the ball

of radius ρ in Ce(Ω). Finally, for any (λ, u) positive solution of (3) with λ ≥ 0,
we call

(16) Rλ := −qλuq−1 − pa(x)up−1.

We say that (λ, u) is linearly asymptotically stable (resp. unstable) if σ1[L+Rλ] >

0 (resp. < 0) and linearly neutrally stable if σ1[L+ Rλ] = 0.
In this section we want to describe the set of parameters λ for which (3) has a

nonnegative solution, that is the set

Λ := {λ ∈ IR : ∃u ∈ P, u 6= 0 solution of (3)}, λ∗ := sup Λ.

By Theorem 4.1 and Proposition 4.4

0 < λ∗ ≤ λ < ∞.

The next result shows that λ∗ goes infty when ‖a+‖∞ goes 0.

Proposition 6.1. Suppose λ > 0. There exists ε := ε(λ) such that if ‖a+‖∞ ≤ ε,
then λ∗ ≥ λ.

Proof. We define the map F : Cα(A+)× intP 7→ X by

F(f, u) := Lu− λuq − fup − a−up.

Observe that F ∈ C1(Cα(A+) × intP ; X). Moreover, by Theorem 3.1, we get
that F(0, θ[λ,a−]) = 0. In addition,

∂2F(0, θ[λ,a−])ξ = Lξ − λqθq−1
[λ,a−]ξ − pa−θp−1

[λ,a−]ξ,

which implies that ∂2F(0, θ[λ,a−]) is nonsingular by (7). The result follows from
the implicit function theorem. £

The following results have been proved in [7] (see Lemma 3.2, Lemma 3.4 and
Theorem 2.2) when L = −∆ and a(x) = 1. There, the authors used Lemma 3.3,
which can not be applied in our case.

Lemma 6.2. For all λ ∈ (0, λ∗), (3) has a positive solution.

Proof. Take λ0 ∈ (0, λ∗). Then, there exists µ ∈ (λ0, λ
∗] such that (3) has a

positive solution w. By the strong maximum principle, w is strictly positive, and
so there exists ε > 0 sufficiently small such that

εϕ1 ≤ w in Ω.
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Moreover, (εϕ1, w) is a sub-supersolution of (3) for λ < µ and ε sufficiently small.
This completes the proof. £

Lemma 6.3. For all λ ∈ (0, λ∗), (3) has a minimal positive solution, denoted by
uλ. Moreover, it holds

(17) σ1[L − qλuq−1
λ − pa(x)up−1

λ ] ≥ 0.

Proof. Given any positive solution u of (3), u is a supersolution of (3) with
a+ ≡ 0, and so u ≥ θ[λ,a−]. We take the pair (u, u) := (θ[λ,a−], z) where z is the
positive solution of (3) built in Lemma 6.2. Then, (u, u) is a sub-supersolution of
(3). We can consider the monotone iteration

(L+M)un+1 = (λuq
n +a(x)up

n +Mun) in Ω, un+1 = 0 on ∂Ω, with u0 = u,

with M sufficiently large. Then, it is not hard to show that un ↑ uλ and that uλ

is the minimal solution of (3).
The inequality (17) follows by Proposition 20.4 in [5], see also Lemma 3.5 in
[7]. £

Proposition 6.4. There exists β > 0 such that for all λ ∈ (0, λ∗), there exists at
most a solution u of (3) such that ‖u‖∞ ≤ β.

Proof. We define

σ := min
λ∈[0,λ∗]

σ1[L − qλθq−1
[λ,a−] − pa−θp−1

[λ,a−]].

By Theorem 3.1 and Lemma 3.2, we get σ > 0. Take

β :=
(

σ

p(a+)M

)1/(p−1)

,

where (a+)M := maxx∈Ω a+(x). Assume there exists a second positive solution
w such that 0 < uλ ≤ w ≤ β. Let Φ = w − uλ be, then since

θ[λ,a−] ≤ uλ ≤ w

and applying the mean value theorem, we have

(L − qλθq−1
[λ,a−] − pa−θp−1

[λ,a−] + p(a−θp−1
[λ,a−] − azp−1))Φ ≤ 0

for some z such that uλ ≤ z ≤ w ≤ β. Taking account Theorem 2.3 and the
definition of β, we obtain that

σ1[L − qλθq−1
[λ,a−] − pa−θp−1

[λ,a−] + p(a−θp−1
[λ,a−] − azp−1)] =

= σ1[L − qλθq−1
[λ,a−] − pa−θp−1

[λ,a−] + p(a−(θp−1
[λ,a−] − zp−1)− a+zp−1)] ≥
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≥ σ1[L − qλθq−1
[λ,a−] − pa−θp−1

[λ,a−] − p(a+)Mβp−1] > 0,

and hence, Φ = 0. £

The next result will be used in the proof of the main result of this section.

Lemma 6.5. Let u a nonnegative and nontrivial solution of (3) with λ = 0.
Then, u is linearly unstable, i.e.,

σ1[L − pa(x)up−1] < 0.

Proof. Observe that any nonnegative and nontrivial solution of (3) with λ = 0
is in fact, by the strong maximum principle, strictly positive. It holds

(L − pa(x)up−1)up = p(1− p)up−2
N

∑

i,j=1

aijDiuDju < 0

and so, by Theorem 2.3 the result follows. £

The following result is consequence of Propositions 20.6, 20.7 and 20.8 of [5].
Recall the definition of Rλ in (16).

Lemma 6.6. Let (λ0, u0) be a positive solution of (3) with λ = λ0 > 0.
(1) If

σ1[L+ Rλ0 ] > 0,

then, there exists ε > 0 and a differentiable mapping u : I := (λ0−ε, λ0 +
ε) 7→ P such that u(λ0) = u0 and (λ, u(λ)) is a positive solution of (3)
for each λ ∈ I. Moreover, the mapping λ 7→ u(λ) is increasing and there
exists a neighborhood V of (λ0, u0) in IR × P such that if (λ, u) ∈ V is a
solution of (3), then (λ, u) = (λ, u(λ)) for some λ ∈ I.

(2) If
σ1[L+ Rλ0 ] = 0,

let Φ0 be the principal eigenfunction associated with σ1[L + Rλ0 ]. Then,
there exists ε > 0 and a differentiable mapping (λ, u) : J := (−ε, ε) 7→
IR × P such that (λ(0), u(0)) = (λ0, u0) and for each s ∈ J , (λ(s), u(s))
is a positive solution of (3). Moreover,

(18) λ(s) = λ0 + s2λ2 + O(s3), u(s) = u0 + sΦ0 + s2Ψ0 + O(s3),

as s ' 0 and
∫

Ω
Φ0Ψ0 = 0. Moreover, there exists a neighborhood W

of (λ0, u0) in IR × P such that (λ, u) ∈ W is a solution of (3), then
(λ, u) = (λ(s), u(s)) for some s ∈ I. Moreover,

(19) signλ′(s) = signσ1[L+ Rλ(s)].
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Proposition 6.7. Assume L selfadjoint (bi = 0 in (2)) and let (λ0, u0) be a
positive solution of (3) with λ = λ0 > 0, such that σ1[L+ Rλ0 ] = 0. Then,

λ2 < 0,

where λ2 is defined (18).

Proof. By Lemma 6.6, for s ∈ J , we have

L(u0 + sΦ0 + s2Ψ0 + O(s3)) = (λ0 + s2λ2 + O(s3))(u0 + sΦ0 + s2Ψ0 + O(s3))q+

+a(x)(u0 + sΦ0 + s2Ψ0 + O(s3))p.

Now, differentiating twice with respect s, taking account that

(L+ Rλ0)Φ0 = 0,

we obtain

(L+ Rλ0)Ψ0 = λ2u
q
0 +

1
2
Φ2

0(q(q − 1)λ0u
q−2
0 + p(p− 1)a(x)up−2

0 ),

and so, by the Fredholm alternative

λ2 =
1
2

∫

Ω

Φ3
0u

q−2
0 (q(1− q)λ0 + p(1− p)a(x)up−q

0 )
∫

Ω

uq
0Φ0

.

Observe that, since u0 and Φ0 are strictly positive, there exist Ci > 0, i = 1, 2,
such that

Φ3
0u

q−2
0 ≤ C1dist(x, ∂Ω)3−2+q ≤ C1,

and so λ2 is well-defined.
To prove that λ2 < 0, the basic tool is a Picone identity (see Section 4 in [12]
and Lemma 4.1 in [21], for instance). Let u, v ∈ C2(Ω) ∩ C1

0 (Ω) be such that
v/u ∈ C(Ω) ∩ C1(Ω) and Υ : [0,∞) 7→ IR of class C1. Then

(20)
∫

Ω

Υ(
v

u
)(vLu− uLv) = −

∫

Ω

Υ′(
v

u
)u2

N
∑

i,j=1

aijDi(
v

u
)Dj(

v

u
).

We take Υ(t) = t2, v = Φ0 and u = u0. Observe that v/u ∈ C(Ω)∩C1(Ω) by the
strong maximum principle. Hence, by (20) and since u cannot be a multiple of v,
we obtain

∫

Ω

Φ3
0u

q−2
0 (λ0(1− q) + a(x)(1− p)up−q

0 ) < 0,

and so, since q < 1

0 < λ0(1− q)
∫

Ω

Φ3
0u

q−2
0 < (p− 1)

∫

Ω

a(x)Φ3
0u

p−2
0



SLOW DIFFUSION AND SUPERLINEAR PROBLEM 817

now, by (H)

λ0q(1− q)
∫

Ω

Φ3
0u

q−2
0 < p(p− 1)

∫

Ω

a(x)Φ3
0u

p−2
0 ,

and therefore λ2 < 0. £

As an easy consequence of Lemma 6.6, relation (19) and Proposition 6.7, we
obtain:

Corollary 6.8. Assume L selfadjoint and let (λ0, u0) be a positive solution of
(3) with λ = λ0 > 0, such that σ1[L + Rλ0 ] = 0. Then, there exists ε > 0 such
that for each λ ∈ (λ0 − ε, λ0), (3) has two positive solutions, one of them linearly
asymptotically stable and the other one linearly unstable. Moreover, there exist
a neighborhood N of (λ0, u0) in IR × P such that (3) does not have a positive
solution in N for λ > λ0.

We are ready to prove the main result of this section.

Theorem 6.9. Assume L selfadjoint and that the hypotheses of Theorem 5.1 are
satisfied. Then,

(1)

Λ = (−∞, λ∗],

(2) There exist, at least, two positive solution in (0, λ∗),
(3) There exists a unique positive solution in (0, λ∗) linearly asymptotically

stable,
(4) If we assume that (3) has a finite number of non-degenerate positive so-

lutions, say u1, . . . , ur, then r = 2k for some k ≥ 1, and exactly k among
them have index −1, and the other k have index 1.

Proof. To show the first paragraph it remains to prove that there exists solution
for λ = λ∗. Let (λn, un) a sequence of solutions with 0 < λn < λ∗ and λn → λ∗.
By Theorem 5.1 and a standard compactness argument, we obtain that un → u∗,
with u∗ solution of (3) for λ = λ∗. Moreover, u∗ 6= 0 because of λ = 0 is the
unique bifurcation value from the trivial solution, hence u∗ > 0.

We will show that the minimal solution uλ is the unique linearly asymptotically
stable. Indeed, we take λ1 > 0 sufficiently small such that σ1[L + Rλ1 ] > 0, for
(λ1, uλ1). This is possible by Lemma 6.3, Proposition 6.4 and Corollary 6.8. By
continuation to the left of λ1, and thanks of Proposition 6.4 and Proposition 6.7,
we obtain that uλ is asymptotically stable for 0 < λ ≤ λ1.
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Now, we prolongate to the right of λ1 to reach a value λ2 ≤ λ∗ where σ1[L+Rλ] >

0 for 0 < λ < λ2 and

σ1[L+ Rλ2 ] = 0.

If λ2 = λ∗, we have just proved the existence of a linearly asymptotically stable
positive solution for λ ∈ (0, λ∗). So, assume λ2 < λ∗ and take λ3 ∈ (λ2, λ

∗)
and consider (λ3, uλ3). In any case, σ1[L + Rλ3 ] = 0 or σ1[L + Rλ3 ] > 0, by
Corollary 6.8 we can take λ4 ∈ (λ2, λ3] such that

σ1[L+ Rλ4 ] > 0.

We can prolongate to the left of λ4 by a branch, say uλ, of linearly asymptotically
stable positive solution, see Proposition 6.7. This branch can not degenerate in
the branch uλ due to the uniqueness of positive solution around the minimal so-
lution uλ. Neither, it can degenerate to 0 in λ = 0, because of Proposition 6.4.
Hence, there exists a positive linearly asymptotically stable for λ = 0, say u0,
which is impossible by Lemma 6.5.
A similar argument can be used to show the uniqueness of positive linearly asymp-
totically stable solution. Moreover, Theorem 5.1 and Theorem 4.1 show the sec-
ond paragraph.

Now, we take Γ := [0, b] with b > λ∗. By Theorem 5.1, there exists a positive
constant C (independent from λ) such that ‖u‖∞ ≤ C for all λ ∈ Γ. We take
R := C + 1 and then for all λ ∈ Γ

(21) iP (K, PR) = 0.

Indeed, we can consider the homotopy

H : [0, 1]× P 7→ P, H(t, u) := (L+ K)−1((λ(1− t) + tb)uq + a(x)up + Ku).

Then,

iP (K, PR) = iP (H(0, ·), PR) = iP (H(1, ·), PR) = iP (H(1, ·), 0) = 0,

because u = 0 is the only solution for λ > λ∗ and by Lemma 4.3. Moreover, by
paragraph 3 and the Leray-Schauder formula we have

iP (K, uλ) = 1.

Without lost of generality we can suppose that u1 = uλ. Now, for each nonde-
generate solutions u2, . . . , ur we have

iP (K, ui) = (−1)ni
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where ni is the sum of the algebraic multiplicities of all the eigenvalues greater
than one of the linearized of K at ui. Since u = 0 has index zero by Lemma 4.3
and (21), we obtain

0 = 0 + 1 +
r

∑

i=2

(−1)ni

from where the result follows. £

Remark 6.10. Observe that we only have used that L is selfadjoint in Propo-
sition 6.7 in order to apply the Picone identity. So, paragraphs (1) and (2) of
Theorem 6.9 are true if L is a general operator as (2).
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