Repositorio de producción científica de la Universidad de Sevilla

A linear mixed finite element scheme for a nematic Ericksen-Leslie liquid crystal model

 

Advanced Search
 

Show simple item record

dc.creator Guillén González, Francisco Manuel es
dc.creator Gutiérrez Santacreu, Juan Vicente es
dc.date.accessioned 2016-05-16T10:30:56Z
dc.date.available 2016-05-16T10:30:56Z
dc.date.issued 2013-09
dc.identifier.issn 0764-583X es
dc.identifier.issn 1290-3841 es
dc.identifier.uri http://hdl.handle.net/11441/41259
dc.description.abstract In this work we study a fully discrete mixed scheme, based on continuous finite elements in space and a linear semi-implicit first-order integration in time, approximating an Ericksen–Leslie nematic liquid crystal model by means of a Ginzburg–Landau penalized problem. Conditional stability of this scheme is proved via a discrete version of the energy law satisfied by the continuous problem, and conditional convergence towards generalized Young measure-valued solutions to the Ericksen–Leslie problem is showed when the discrete parameters (in time and space) and the penalty parameter go to zero at the same time. Finally, we will show some numerical experiences for a phenomenon of annihilation of singularities. es
dc.description.sponsorship Ministerio de Educación y Ciencia es
dc.format application/pdf es
dc.language.iso eng es
dc.publisher Centre National de la Recherche Scientifique es
dc.relation.ispartof ESAIM : Mathematical modelling and numerical analysis es
dc.rights Attribution-NonCommercial-NoDerivatives 4.0 Internacional *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0/ *
dc.subject Liquid crystal es
dc.subject Navier–Stokes es
dc.subject stability es
dc.subject convergence es
dc.subject finite elements es
dc.subject penalization es
dc.title A linear mixed finite element scheme for a nematic Ericksen-Leslie liquid crystal model es
dc.type info:eu-repo/semantics/article es
dc.type.version info:eu-repo/semantics/publishedVersion es
dc.rights.accessrights info:eu-repo/semantics/openAccess es
dc.contributor.affiliation Universidad de Sevilla. Departamento de Ecuaciones Diferenciales y Análisis Numérico es
dc.relation.projectID MTM2009–12927 es
dc.identifier.doi http://dx.doi.org/10.1051/m2an/2013076 es
idus.format.extent 32 p. es
dc.identifier.idus https://idus.us.es/xmlui/handle/11441/41259
dc.contributor.funder Ministerio de Educación y Ciencia (MEC). España
Size: 1004.Kb
Format: PDF

This item appears in the following Collection(s)

Show simple item record