Show simple item record

dc.contributor.advisorLanga Rosado, José Antonioes
dc.contributor.advisorCaraballo Garrido, Tomáses
dc.creatorGaladí García, Javier Alejandroes
dc.date.accessioned2020-06-08T10:34:04Z
dc.date.available2020-06-08T10:34:04Z
dc.date.issued2020-04-21
dc.identifier.urihttps://hdl.handle.net/11441/97528
dc.description.abstractThis thesis applies the great advances of modern dynamical systems theory (DST) to consciousness. Consciousness, or subjective experience, is faced here in two different ways: from the global dynamics of the human brain and from the integrated information theory (IIT), one of the currently most prestigious theories on consciousness. Before that, a study of a numerical simulation of a network of individual neurons justifies the use of the Lotka-Volterra model for neurons assemblies in both applications. All these proposals are developed following this scheme: • First, summarizing the structure, methods and goal of the thesis. • Second, introducing a general background in neuroscience and the global dynamics of the human brain to better understand those applications. • Third, conducting a study of a numerically simulated network of neurons. This network, which displays brain rhythms, can be employed, among other objectives, to justify the use of the Lotka-Volterra model for applications. • Fourth, summarizing concepts from the mathematical DST such as the global attractor and its informational structure, in addition to its particularization to a Lotka-Volterra system. • Fifth, introducing the new mathematical concepts of model transform and instantaneous parameters that allow the application of simple mathematical models such as Lotka-Volterra to complex empirical systems as the human brain. • Sixth, using the model transform, and specifically the Lotka-Volterra transform, to calculate global attractors and informational structures in global dynamics of the human brain. • Seventh, knowing the probably most prestigious theory on consciousness, the IIT developed by G. Tononi. • Eighth, using informational structures to develop a continuous version of IIT. And ninth, establishing some final conclusions and commenting on new open questions from this work. These nine points of this scheme correspond to the nine chapters of this thesis.
dc.formatapplication/pdfes
dc.format.extent223 p.es
dc.language.isoenges
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleDynamical systems applied to consciousness and brain rhythms in a neural networkes
dc.typeinfo:eu-repo/semantics/doctoralThesises
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Matemática Aplicada I (ETSII)es

FilesSizeFormatViewDescription
GALADI GARCIA, JAVIER ALE. ...21.83MbIcon   [PDF] View/Open  

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as: Attribution-NonCommercial-NoDerivatives 4.0 Internacional