Article
Effect of Plant Growth-Promoting Rhizobacteria on Salicornia ramosissima Seed Germination under Salinity, CO2 and Temperature Stress
Author/s | Mesa Marín, Jennifer
![]() ![]() ![]() ![]() ![]() ![]() ![]() Pérez Romero, Jesús Alberto Mateos Naranjo, Enrique ![]() ![]() ![]() ![]() ![]() ![]() ![]() Bernabeu Meana, Miguel Pajuelo Domínguez, Eloísa ![]() ![]() ![]() ![]() ![]() ![]() Rodríguez Llorente, Ignacio David ![]() ![]() ![]() ![]() ![]() ![]() Redondo Gómez, Susana ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Department | Universidad de Sevilla. Departamento de Biología Vegetal y Ecología Universidad de Sevilla. Departamento de Microbiología y Parasitología |
Date | 2019-10-18 |
Published in |
|
Abstract | In a scenario of climate change and growing population, halophyte root microbiota interactions may be a sustainable solution to improve alternative crop production while combating abiotic stress. In this work, seeds of the ... In a scenario of climate change and growing population, halophyte root microbiota interactions may be a sustainable solution to improve alternative crop production while combating abiotic stress. In this work, seeds of the cash crop halophyte Salicornia ramosissima were inoculated with five different plant growth-promoting rhizobacteria consortia, isolated from the rhizosphere of five halophytes in southwestern Spain salt marshes. For the first time, we recorded seed germination response to three interactive abiotic stressors, CO2 (400 and 700 ppm), temperature (25 and 29 ℃) and salinity (171, 510 and 1030 mM NaCl), all of them related to climate change. Salinity played a decisive role, as no significant differences were registered between treatments at 171 mM NaCl and no germination took place at 1030 mM NaCl. At 510 mM NaCl, one rhizobacterial consortium improved seed parameters notably, increasing up to 114% germination percentage and 65% seedlings biomass. These first findings encourage us to think that cash crop halophytes like S. ramosissima and halophyte root microbiota may be valuable resources for human or animal feeding in a future climate reality. |
Project ID. | CGL2016-75550-R
![]() FPU014/03987 ![]() |
Citation | Mesa Marín, J., Pérez Romero, J.A., Mateos Naranjo, E., Bernabeu Meana, M., Pajuelo Domínguez, E., Rodríguez Llorente, I.D. y Redondo Gómez, S. (2019). Effect of Plant Growth-Promoting Rhizobacteria on Salicornia ramosissima Seed Germination under Salinity, CO2 and Temperature Stress. Agronomy, 9 (10), 655. |
Files | Size | Format | View | Description |
---|---|---|---|---|
agronomy-09-00655-v2.pdf | 2.130Mb | ![]() | View/ | |