Show simple item record

Article

dc.creatorCabrales, Roberto Carloses
dc.creatorGutiérrez Santacreu, Juan Vicentees
dc.creatorRodríguez Galván, José Rafaeles
dc.date.accessioned2019-10-21T10:25:57Z
dc.date.available2019-10-21T10:25:57Z
dc.date.issued2019
dc.identifier.citationCabrales, R.C., Gutiérrez Santacreu, J.V. y Rodríguez Galván, J.R. (2019). Numerical solution for an aggregation equation with degenerate diffusion. ArXiv.org, arXiv:1803.10286
dc.identifier.urihttps://hdl.handle.net/11441/89765
dc.description.abstractA numerical method for approximating weak solutions of an aggregation equation with degenerate diffusion is introduced. The numerical method consists of a stabilized nite element method together with a mass lumping technique and an extra stabilizing term plus a semi{implicit Euler time integration. Then we carry out a rigorous passage to the limit as the spatial and temporal discretization parameters tend to zero, and show that the sequence of nite element approximations converges toward the unique weak solution of the model at hands. In doing so, nonnegativity is attained due to the stabilizing term and the acuteness on partitions of the computational domain, and hence a priori energy estimates of nite element approximations are established. As we deal with a nonlinear problem, some form of strong convergence is required. The key compactness result is obtained via an adaptation of a Riesz-Fréchet-Kolmogorov criterion by perturbation. A numerical example is also presented.es
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades PGC2018-098308-B-I00es
dc.formatapplication/pdfes
dc.language.isoenges
dc.publisherCornell Universityes
dc.relation.ispartofArXiv.org, arXiv:1803.10286
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectFinite-element approximationes
dc.subjectAggregation equationes
dc.subjectNonlinear diffusiones
dc.titleNumerical solution for an aggregation equation with degenerate diffusiones
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Matemática Aplicada I (ETSII)es
dc.relation.projectIDPGC2018-098308-B-I00es
dc.relation.publisherversionhttps://arxiv.org/abs/1803.10286es
dc.identifier.doi10.1016/j.amc.2020.125145
idus.format.extent27es
dc.journaltitleArXiv.orges
dc.publication.issuearXiv:1803.10286es

FilesSizeFormatViewDescription
Numerical solution for an ...2.707MbIcon   [PDF] View/Open  

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as: Attribution-NonCommercial-NoDerivatives 4.0 Internacional