Article
Non-Lipschitz differentiable functions on slit domains
Author/s | Bernal González, Luis
Jiménez Rodríguez, Pablo Muñoz Fernández, Gustavo Adolfo Seoane Sepúlveda, Juan Benigno |
Department | Universidad de Sevilla. Departamento de Análisis Matemático |
Publication Date | 2017-05 |
Deposit Date | 2019-06-19 |
Published in |
|
Abstract | It is proved the existence of large algebraic structures –including large vector subspaces or infinitely generated free algebras– inside the family of non-Lipschitz differentiable real functions with bounded gradient defined ... It is proved the existence of large algebraic structures –including large vector subspaces or infinitely generated free algebras– inside the family of non-Lipschitz differentiable real functions with bounded gradient defined on special non-convex plane domains. In particular, this yields that there are many differentiable functions on plane domains that do not satisfy the Mean Value Theorem. |
Project ID. | FQM-127
P08-FQM-03543 MTM2015-65242-C2-1-P MTM2012- 34341 |
Citation | Bernal González, L., Jiménez Rodríguez, P., Muñoz Fernández, G.A. y Seoane Sepúlveda, J.B. (2017). Non-Lipschitz differentiable functions on slit domains. Revista Matemática Complutense, 30 (2), 269-279. |
Files | Size | Format | View | Description |
---|---|---|---|---|
Non-Lipschitz differentiable ... | 1.312Mb | [PDF] | View/ | |