Slide 1 of 5
idUS celebra 10 años
Conoce los logros del repositorio para difundir la producción científica en abierto en la US.
Slide 2 of 5
Más de 3.000 aportaciones de sexenios en idUS
Estas aportaciones depositadas en el repositorio permiten el cumplimiento de los requisitos de la convocatoria de ANECA.
Slide 3 of 5
Abrimos idUS a una nueva etapa
Potenciamos la Ciencia Abierta con un repositorio más fácil de consultar.
Slide 4 of 5
idUS ofrece estadísticas más visuales
Con nuevos gráficos y agrupaciones de datos para que la información sea completa y manejable.
Slide 5 of 5
Nuevos perfiles de autor en idUS
Clasifica las publicaciones por el tipo de autoría y sigue conectado a Prisma y al resto de identificadores personales.
Envíos recientes

Intracellular signalling in arterial chemoreceptors during acute hypoxia and glucose deprivation: role of ATP
(Willey-Blackwell, 2025-03-01) Torres López, María; González Rodríguez, Patricia; Colinas Miranda, Olalla; Rho, Hee-Sool; Torres Torrelo, Hortensia; Castellano Orozco, Antonio Gonzalo; Gao Chen, Lin; Ortega Sáenz, Patricia; López Barneo, José; Universidad de Sevilla. Departamento de Fisiología Médica y Biofísica; Ministerio de Ciencia e Innovación (MICIN). España; European Research Council (ERC)
The carotid body (CB) is the main oxygen (O2) sensing organ that mediates reflex hyperventilation and increased cardiac output in response to hypoxaemia. Acute O2 sensing is an intrinsic property of CB glomus cells, which contain special mitochondria to generate signalling molecules (NADH and H2O2) that modulate membrane K+ channels in response to lowered O2 tension (hypoxia). In parallel with these membrane-associated events, glomus cells are highly sensitive to mitochondrial electron transport chain (ETC) inhibitors. It was suggested that a decrease in oxidative production of ATP is a critical event mediating hypoxia-induced cell depolarization. Here, we show that rotenone [an inhibitor of mitochondrial complex (MC) I] activates rat and mouse glomus cells but abolishes their responsiveness to hypoxia. Rotenone does not prevent further activation of the cells by cyanide (a blocker of MCIV) or glucose deprivation. Responsiveness to glucose deprivation is enhanced in O2-insenstive glomus cells with genetic disruption of MCI. These findings suggest that acute O2 sensing requires a functional MCI but that a decrease in intracellular ATP, presumably produced by the simultaneous inhibition of MCI and MCIV, is not involved in hypoxia signalling. In support of this concept, ATP levels in single glomus cells were unaltered by hypoxia, but rapidly declined following exposure of the cells to low glucose or to inhibitors of oxidative phosphorylation. These observations indicate that a reduction in intracellular ATP does not participate in physiological acute O2 sensing. However, local decreases in ATP of glycolytic origin may contribute to low glucose signalling in glomus cells.

Interfacing with the Brain: How Nanotechnology Can Contribute
(American Chemical Society, 2025-03-10) Ahmed, Abdullah A. A.; Alegret, Nuria; Almeida, Bethany; Alvarez-Puebla, Ramón; Andrews, Anne M.; Ballerini, Laura; Fernández-Chacón, Rafael; Parak, Wolfgang J.; Universidad de Sevilla. Departamento de Fisiología Médica y Biofísica; Junta de Andalucía; European Union; Universitat Rovira i Virgili; Agencia Estatal de Investigación. España
Interfacing artificial devices with the human brain is the central goal of neurotechnology. Yet, our imaginations are often limited by currently available paradigms and technologies. Suggestions for brain–machine interfaces have changed over time, along with the available technology. Mechanical levers and cable winches were used to move parts of the brain during the mechanical age. Sophisticated electronic wiring and remote control have arisen during the electronic age, ultimately leading to plug-and-play computer interfaces. Nonetheless, our brains are so complex that these visions, until recently, largely remained unreachable dreams. The general problem, thus far, is that most of our technology is mechanically and/or electrically engineered, whereas the brain is a living, dynamic entity. As a result, these worlds are difficult to interface with one another. Nanotechnology, which encompasses engineered solid-state objects and integrated circuits, excels at small length scales of single to a few hundred nanometers and, thus, matches the sizes of biomolecules, biomolecular assemblies, and parts of cells. Consequently, we envision nanomaterials and nanotools as opportunities to interface with the brain in alternative ways. Here, we review the existing literature on the use of nanotechnology in brain–machine interfaces and look forward in discussing perspectives and limitations based on the authors’ expertise across a range of complementary disciplines─from neuroscience, engineering, physics, and chemistry to biology and medicine, computer science and mathematics, and social science and jurisprudence. We focus on nanotechnology but also include information from related fields when useful and complementary.

Longitudinal trajectories in negative symptoms and changes in brain cortical thickness: 10-year follow-up study
(Royal College of Psychiatrists; Cambridge Univ Press, 2023) Canal-Rivero, M.; Ruiz Veguilla, Miguel; Ortiz García de la Foz, V.; López Díaz, Álvaro; Garrido-Torres, N.; Ayesa-Arriola, R.; Vázquez-Bourgon, J.; Mayoral-van Son, Jaqueline; Brambilla, P.; Kircher, T.; Romero García, Rafael; Crespo Facorro, Benedicto; Universidad de Sevilla. Departamento de Psiquiatría; Universidad de Sevilla. Departamento de Fisiología Médica y Biofísica; Universidad de Sevilla. CTS1086: Psiquiatría Traslacional
Background
Understanding the evolution of negative symptoms in first-episode psychosis (FEP) requires long-term longitudinal study designs that capture the progression of this condition and the associated brain changes.
Aims
To explore the factors underlying negative symptoms and their association with long-term abnormal brain trajectories.
Method
We followed up 357 people with FEP over a 10-year period. Factor analyses were conducted to explore negative symptom dimensionality. Latent growth mixture modelling (LGMM) was used to identify the latent classes. Analysis of variance (ANOVA) was conducted to investigate developmental trajectories of cortical thickness. Finally, the resulting ANOVA maps were correlated with a wide set of regional molecular profiles derived from public databases.
Results
Three trajectories (stable, decreasing and increasing) were found in each of the three factors (expressivity, experiential and attention) identified by the factor analyses. Patients with an increasing trajectory in the expressivity factor showed cortical thinning in caudal middle frontal, pars triangularis, rostral middle frontal and superior frontal regions from the third to the tenth year after the onset of the psychotic disorder. The F-statistic map of cortical thickness expressivity differences was associated with a receptor density map derived from positron emission tomography data.
Conclusions
Stable and decreasing were the most common trajectories. Additionally, cortical thickness abnormalities found at relatively late stages of FEP onset could be exploited as a biomarker of poor symptom outcome in the expressivity dimension. Finally, the brain areas with less density of receptors spatially overlap areas that discriminate the trajectories of the expressivity dimension.

Estrategias para el almacenamiento de combustibles criogénicos en aeronaves propulsadas por turbofán de flujo mezclado
(2025) Alcaraz Gómez, Pablo; Jiménez-Espadafor Aguilar, Francisco José; Universidad de Sevilla. Departamento de Ingeniería Energética
Este proyecto nace del interés analizar la viabilidad de la implantación del uso del gas natural licuado (GNL) criogénico como propulsante de una aeronave comercial. El estudio se realizará utilizando la conocida herramienta de MATLAB.
Para abordar este propósito, en primer lugar se desarrollará el perfil de vuelo de la aeronave, en este caso el B-767 300ER de la marca americana BOEING®, haciendo uso de los mapas motores generados también en MATLAB; posteriormente se estudiará la posibilidad de realizar la misión diseñada con sendos combustibles alternativos; finalmente, y si procede, se llevará a cabo un estudio orientado en valorar la implementación de dichos combustibles en la aeronave mencionada.
Debido a la complejidad del diseño, se parte de la máxima de que el dimensionado de la aeronave y la planta de potencia permanecerán como en la configuración original, a excepción del combustible embarcado. Por ello, parece recomendable reflexionar sobre las posibles soluciones para transportar los propulsantes criogénicos a bordo del avión así como la problemática derivada de dicho análisis.

Decoupling Patrolling Tasks for Water Quality Monitoring: A Multi-Agent Deep Reinforcement Learning Approach
(IEEE, 2024) Seck Diop, Dame; Yanes Luis, Samuel; Perales Esteve, Manuel Ángel; Toral, S. L.; Gutiérrez Reina, Daniel; Universidad de Sevilla. Departamento de Ingeniería Electrónica; Ministerio de Ciencia e Innovación (MICIN). España; European Union (UE)
This study proposes the use of an Autonomous Surface Vehicle (ASV) fleet with water quality sensors for efficient patrolling to monitor water resource pollution. This is formulated as a Patrolling Problem, which consists of planning and executing efficient routes to continuously monitor a given area. When patrolling Lake Ypacaraí with ASVs, the scenario transforms into a Partially Observable Markov Game (POMG) due to unknown pollution levels. Given the computational complexity, a Multi-Agent Deep Reinforcement Learning (MADRL) approach is adopted, with a common policy for homogeneous agents. A consensus algorithm assists in collision avoidance and coordination. The work introduces exploration and reinforcement phases to the patrolling problem. The Exploration Phase aims at homogeneous map coverage, while the Intensification Phase prioritizes high polluted areas. The innovative introduction of a transition variable, ν, efficiently controls the transition from exploration to intensification. Results demonstrate the superiority of the method, which outperforms a Single-Phase (trained on a single task) Deep Q-Network (DQN) by an average of 17% on the intensification task. The proposed multitask learning approach with parameter sharing, coupled with DQN training, outperforms Task-Specific DQN (two DQNs trained on separate tasks) by 6% in exploration and 13% in intensification. It also outperforms the heuristic-based Lawn Mower Path Planner (LMPP) and Random Wanderer Path Planner (RWPP) algorithms, by 35% and 20% on average respectively. Additionally, it outperforms a Particle Swarm Optimization-based Path Planner (PSOPP) by an average of 26%. The algorithm demonstrates adaptability in unforeseen scenarios, giving users flexibility in configuration.