Mostrar el registro sencillo del ítem

Ponencia

dc.creatorTaylor, Andyes
dc.creatorAshcheulov, Petres
dc.creatorZivcova, Zuzana Vlckovaes
dc.creatorRemzová, M.es
dc.creatorKopeček, Jaromíres
dc.creatorHubík, Paveles
dc.creatorKlimša, Ladislaves
dc.creatorRemes, Z.es
dc.creatorKavan, Ladislaves
dc.creatorBeltrán, Ana M.es
dc.date.accessioned2019-06-12T10:28:08Z
dc.date.available2019-06-12T10:28:08Z
dc.date.issued2017
dc.identifier.citationTaylor, A., Ashcheulov, P., Zivcova, Z.V., Remzová, M., Kopeček, J., Hubík, P.,...,Beltrán, A.M. (2017). Large area heavily boron doped nano-crystalline diamond growth by MW-LA-PECVD [Póster]. En De Beers 68th Diamond Conference, Warwick. United Kingdom.
dc.identifier.urihttps://hdl.handle.net/11441/87376
dc.description.abstractDiamond is a unique semiconductor with a wide bandgap which usually is easily doped with boron and is acknowledged as one of the best materials for electrochemical applications. Heavily boron doped, high quality single crystal synthetic diamond can reach electrical conductivity as high as 103 S.cm, whereas polycrystalline material usually reaches c.a. 102 S.cm. However, many potential applications are restricted by the deposition temperature and limited coating area of conventional MW PECVD systems. Deposition of boron doped nano-crystalline diamond (BNCD) layers using a microwave PECVD system with linear antenna delivery (MW-LA-PECVD), enabling large area coating, was first reported in 2014 [1]. However, layers showed lower electrical conductivity in comparison to BNCD layers deposited using conventional PECVD systems. In addition, deposition of BNCD by MW-LA-PECVD is complicated by the necessity for the addition of oxygen species, which are known to limit boron incorporation and the competitive growth of silicon carbide at low CO2 concentrations [2, 3]. In this work, we further study the effect of deposition conditions on the synthesis of BNCD using the MW-LA-PECVD technique. In order to produce highly conductive BNCD with a low sp2 fraction, we have investigated in greater detail the effect of deposition temperature, from 250 °C up to 750 °C, using temperature controlled substrate stages and the effect of precursor gas compositions.es
dc.formatapplication/pdfes
dc.language.isoenges
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectConductive diamondes
dc.subjectBoron dopinges
dc.subjectLarge area depositiones
dc.subjectMW-LA-PECVDes
dc.titleLarge area heavily boron doped nano-crystalline diamond growth by MW-LA-PECVD [Póster]es
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Ingeniería y Ciencia de los Materiales y del Transportees
dc.contributor.groupUniversidad de Sevilla. TEP123: Metalurgia e Ingeniería de los Materialeses
idus.format.extent1 p.es
dc.eventtitleDe Beers 68th Diamond Conferencees
dc.eventinstitutionWarwick. United Kingdomes

FicherosTamañoFormatoVerDescripción
beltran_ponencia_2017_large.pdf1.299MbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional