Mostrar el registro sencillo del ítem

Artículo

dc.creatorRíos Moreno, Pabloes
dc.creatorRodríguez, Amores
dc.creatorLópez Serrano, Joaquínes
dc.date.accessioned2018-06-22T09:33:54Z
dc.date.available2018-06-22T09:33:54Z
dc.date.issued2016
dc.identifier.citationRios, P., Rodríguez, A. y López-Serrano, J. (2016). Mechanistic Studies on the Selective Reduction of CO2 to the Aldehyde Level by a PBP-Supported Nickel Complex. ACS Catalysis, 6 (9), 5715-5723.
dc.identifier.issn2155-5435es
dc.identifier.urihttps://hdl.handle.net/11441/76381
dc.description.abstractThis work describes a thorough investigation of the mechanism of a highly selective hydrosilylation of CO2 to the formaldehyde level catalyzed by a bis(phosphino)boryl (PBP)Ni(II) complex in the presence of B(C6F5)3. CO2 activation by insertion into the Ni–H bond of the catalyst precursor 2 is shown to occur very easily, because of the trans influence exerted by the boryl ligand. During catalysis, the limiting step is B(C6F5)3 dissociation from the active species (PBP)Ni–OCHO·B(C5F6)3 (4), which controls the amount of free borane that can lead to over-reduction to methane. Free borane activates the silane by formation of [R3Si–H···B(C6F5)3], which can then transfer the silylium (R3Si+) fragment to the oxygen atoms of the Ni formate and Ni acetal intermediates. The ion pair [(PBP)Ni][HB(C6F5)3] (5) is the key species that activates CO2 in the catalytic cycle (and silylformate in a second step) with [HB(C6F5)3]− as the source of hydride. Hydride transfer to [(PBP)Ni–OCO]+ is virtually barrierless, whereas hydride transfer to [(PBP)Ni–OCHOSiR3]+ has the second-highest energy barrier of the process (25.2 kcal mol–1). Therefore, the (PBP)Ni framework is instrumental in both reduction steps of the catalysis and controls the selectivity of the reaction by sequestering B(C6F5)3es
dc.description.sponsorshipMinisterio de Economía, Industria y Competitividad CTQ2013-45011-P and CTQ2014-51912-REDCes
dc.description.sponsorshipJunta de Andalucía FQM-2126es
dc.formatapplication/pdfes
dc.language.isoenges
dc.publisherAmerican Chemical Societyes
dc.relation.ispartofACS Catalysis, 6 (9), 5715-5723.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectBoryl ligandses
dc.subjectCO2es
dc.subjectDFT calculationses
dc.subjectHydrosilylationes
dc.subjectMechanismses
dc.subjectNickel complexeses
dc.titleMechanistic Studies on the Selective Reduction of CO2 to the Aldehyde Level by a PBP-Supported Nickel Complexes
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/submittedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Química Inorgánicaes
dc.relation.publisherversionhttp://dx.doi.org/10.1021/acscatal.6b01715es
dc.identifier.doi10.1021/acscatal.6b01715es
idus.format.extent31es
dc.journaltitleACS Catalysises
dc.publication.volumen6es
dc.publication.issue9es
dc.publication.initialPage5715es
dc.publication.endPage5723es

FicherosTamañoFormatoVerDescripción
ACS Catalysis 2016-pre.pdf1.110MbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional